Machine Learning Consulting Unit

Mission Statement

Our primary goal is to provide consulting to applied sciences, for example medicine, psychology, biology and others. We aim to provide solutions, that based on our experience and expertise are most suitable to answer the research question at hand.

The Machine Learning Consulting Unit (MLCU) is part of the Munich Center for Machine Learning (MCML) and offers applied researchers scientific consulting regarding the application and evaluation of machine learning methods. Consulting is free of charge (ca. 8h per project) for members of the MCML and the LMU. Consulting outside the MCML and LMU is also possible, but needs to be negotiated on a case by case basis. We also welcome joint research projects with the goal of publication and other forms of cooperation.


If you are interested in consulting, see contact information below. Experience shows, that it is advisable to register for consulting as early in the project as possible or even at the planning stage.

Contact

If you are interested in consulting, please register using our webform.

For other request contact mlcu[at]stat.uni-muenchen.de

For statistical consulting also consider contacting the Statistical Consulting Unit (StaBLab).

Recent and Current Projects

Selection of projects (see also publications list below) that resulted from consulting requests in the past

Our team

Name       Position
Dr. Andreas Bender       Lead
Prof. Bernd Bischl       Principal Investigator
Prof. David Rügamer       Professor for Data Science
Dr. Ludwig Bothmann       PostDoc

Publications

  1. Mittermeier, A., Aßenmacher, M., Schachtner, B., Grosu, S., Dakovic, V., Kandratovich, V., Sabel, B., & Ingrisch, M. (2024). Automatische ICD-10-Codierung. Die Radiologie, 1–7.
    link
  2. Solderer, A., Hicklin, S., Aßenmacher, M., Ender, A., & Schmidlin, P. (2024). Influence of an allogenic collagen scaffold on implant sites with thin supracrestal tissue height: a randomized clinical trial. Clinical Oral Investigations, 28, 313.
    link|pdf
  3. Liew, B. X. W., Pfisterer, F., Rügamer, D., & Zhai, X. (2024). Strategies to optimise machine learning classification performance when using biomechanical features. Journal of Biomechanics, 111998.
    link
  4. Weber, T., Ingrisch, M., Bischl, B., & Rügamer, D. (2024, January). Constrained Probabilistic Mask Learning for Task-specific Undersampled MRI Reconstruction. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).
    link|pdf
  5. Liew, B. X. W., Rügamer, D., & Birn-Jeffery, A. (2023). Neuromechanical stabilisation of the centre of mass during running. Gait & Posture.
  6. Weber, T., Ingrisch, M., Bischl, B., & Rügamer, D. (2023). Unreading Race: Purging Protected Features from Chest X-ray Embeddings. ArXiv:2311.01349.
    link|pdf
  7. Liew, B. X. W., Kovacs, F. M., Rügamer, D., & Royuela, A. (2023). Automatic Variable Selection Algorithms in Prognostic Factor Research in Neck Pain. Journal of Clinical Medicine, 12(19).
  8. Ott, F., Rügamer, D., Heublein, L., Bischl, B., & Mutschler, C. (2023). Auxiliary Cross-Modal Representation Learning With Triplet Loss Functions for Online Handwriting Recognition. IEEE Access, 11, 94148–94172. https://doi.org/10.1109/ACCESS.2023.3310819
  9. Bothmann, L., Wimmer, L., Charrakh, O., Weber, T., Edelhoff, H., Peters, W., Nguyen, H., Benjamin, C., & Menzel, A. (2023). Automated wildlife image classification: An active learning tool for ecological applications. Ecological Informatics, 77(102231).
    link|pdf
  10. Liew, B. X. W., Rügamer, D., Mei, Q., Altai, Z., Zhu, X., Zhai, X., & Cortes, N. (2023). Smooth and accurate predictions of joint contact force timeseries in gait using overparameterised deep neural networks. Frontiers in Bioengineering and Biotechnology: Biomechanics.
  11. Rath, K., Rügamer, D., Bischl, B., von Toussaint, U., & Albert, C. (2023). Dependent state space Student-t processes for imputation and data augmentation in plasma diagnostics. Contributions to Plasma Physics.
  12. Gertheiss, J., Rügamer, D., Liew, B., & Greven, S. (2023). Functional Data Analysis: An Introduction and Recent Developments.
    link
  13. Hartl, W. H., Kopper, P., Xu, L., Heller, L., Mironov, M., Wang, R., Day, A. G., Elke, G., Küchenhoff, H., & Bender, A. (2023). Relevance of Protein Intake for Weaning in the Mechanically Ventilated Critically Ill: Analysis of a Large International Database. Critical Care Medicine.
    link
  14. Hendrix, P., Sun, C. C., Brighton, H., & Bender, A. (2023). On the Connection Between Language Change and Language Processing. Cognitive Science, 47(12), e13384.
    link|pdf
  15. Coens, F., Knops, N., Tieken, I., Vogelaar, S., Bender, A., Kim, J. J., Krupka, K., Pape, L., Raes, A., Tönshoff, B., Prytula, A., & Registry, C. (2023). Time-Varying Determinants of Graft Failure in Pediatric Kidney Transplantation in Europe. Clinical Journal of the American Society of Nephrology.
    link
  16. Vogel, M., Aßenmacher, M., Gubler, A., Attin, T., & Schmidlin, P. R. (2023). Cleaning potential of interdental brushes around orthodontic brackets-an in vitro investigation. Swiss Dental Journal, 133(9).
    link|pdf
  17. Ziegler, I., Ma, B., Nie, E., Bischl, B., Rügamer, D., Schubert, B., & Dorigatti, E. (2022, October 24). What cleaves? Is proteasomal cleavage prediction reaching a ceiling? NeurIPS 2022 Workshop on Learning Meaningful Representations of Life (LMRL).
    link|pdf
  18. Kaiser, P., Rügamer, D., & Kern, C. (2022, October 24). Uncertainty as a key to fair data-driven decision making. NeurIPS 2022 Workshop on Trustworthy and Socially Responsible Machine Learning (TSRML).
    link|pdf
  19. Ghada, W., Casellas, E., Herbinger, J., Garcia-Benadí, A., Bothmann, L., Estrella, N., Bech, J., & Menzel, A. (2022). Stratiform and Convective Rain Classification Using Machine Learning Models and Micro Rain Radar. Remote Sensing, 14(18).
    link
  20. Rath, K., Rügamer, D., Bischl, B., von Toussaint, U., Rea, C., Maris, A., Granetz, R., & Albert, C. (2022). Data augmentation for disruption prediction via robust surrogate models. Journal of Plasma Physics.
  21. Mittermeier, M., Weigert, M., Rügamer, D., Küchenhoff, H., & Ludwig, R. (2022). A Deep Learning Version of Hess & Brezowskys Classification of Großwetterlagen over Europe: Projection of Future Changes in a CMIP6 Large Ensemble. Environmental Research Letters.
  22. Beaudry, G., Drouin, O., Gravel, J., Smyrnova, A., Bender, A., Orri, M., Geoffroy, M.-C., & Chadi, N. (2022). A Comparative Analysis of Pediatric Mental Health-Related Emergency Department Utilization in Montréal, Canada, before and during the COVID-19 Pandemic. Annals of General Psychiatry, 21(1), 17.
    link|pdf
  23. Liew, B. X. W., Kovacs, F. M., Rügamer, D., & Royuela, A. (2022). Machine learning for prognostic modelling in individuals with non-specific neck pain. European Spine Journal.
  24. Pretzsch, E., Heinemann, V., Stintzing, S., Bender, A., Chen, S., Holch, J. W., Hofmann, F. O., Ren, H., Bösch, F., Küchenhoff, H., Werner, J., & Angele, M. K. (2022). EMT-Related Genes Have No Prognostic Relevance in Metastatic Colorectal Cancer as Opposed to Stage II/III: Analysis of the Randomised, Phase III Trial FIRE-3 (AIO KRK 0306; FIRE-3). Cancers, 14(22), 5596.
    link|pdf
  25. Liew, B. X. W., Rügamer, D., Duffy, K., Taylor, M., & Jackson, J. (2021). The mechanical energetics of walking across the adult lifespan. PloS One, 16(11), e0259817.
    link
  26. Mittermeier, M., Weigert, M., & Rügamer, D. (2021). Identifying the atmospheric drivers of drought and heat using a smoothed deep learning approach. NeurIPS 2021, Tackling Climate Change with Machine Learning.
    link|pdf
  27. Weber, T., Ingrisch, M., Bischl, B., & Rügamer, D. (2021). Towards modelling hazard factors in unstructured data spaces using gradient-based latent interpolation. NeurIPS 2021 Workshops, Deep Generative Models and Downstream Applications.
    link|pdf
  28. Weber, T., Ingrisch, M., Fabritius, M., Bischl, B., & Rügamer, D. (2021). Survival-oriented embeddings for improving accessibility to complex data structures. NeurIPS 2021 Workshops, Bridging the Gap: From Machine Learning Research to Clinical Practice.
    link|pdf
  29. Liew, B. X. W., Rügamer, D., Zhai, X. J., Morris, S., & Netto, K. (2021). Comparing machine, deep, and transfer learning in predicting joint moments in running. Journal of Biomechanics.
  30. Ott, F., Rügamer, D., Heublein, L., Bischl, B., & Mutschler, C. (2021, October 3). Joint Classification and Trajectory Regression of Online Handwriting using a Multi-Task Learning Approach. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).
  31. Python, A., Bender, A., Blangiardo, M., Illian, J. B., Lin, Y., Liu, B., Lucas, T. C. D., Tan, S., Wen, Y., Svanidze, D., & Yin, J. (2021). A Downscaling Approach to Compare COVID-19 Count Data from Databases Aggregated at Different Spatial Scales. Journal of the Royal Statistical Society: Series A (Statistics in Society). https://doi.org/10.1111/rssa.12738
  32. Fabritius, M. P., Seidensticker, M., Rueckel, J., Heinze, C., Pech, M., Paprottka, K. J., Paprottka, P. M., Topalis, J., Bender, A., Ricke, J., Mittermeier, A., & Ingrisch, M. (2021). Bi-Centric Independent Validation of Outcome Prediction after Radioembolization of Primary and Secondary Liver Cancer. Journal of Clinical Medicine, 10(16), 3668. https://doi.org/10.3390/jcm10163668
  33. Falla, D., Devecchi, V., Jimenez-Grande, D., Rügamer, D., & Liew, B. (2021). Modern Machine Learning Approaches Applied in Spinal Pain Research. Journal of Electromyography and Kinesiology.
  34. Python, A., Bender, A., Nandi, A. K., Hancock, P. A., Arambepola, R., Brandsch, J., & Lucas, T. C. D. (2021). Predicting non-state terrorism worldwide. Science Advances, 7(31), eabg4778. https://doi.org/10.1126/sciadv.abg4778
  35. Liew, B., Lee, H. Y., Rügamer, D., Nunzio, A. M. D., Heneghan, N. R., Falla, D., & Evans, D. W. (2021). A novel metric of reliability in pressure pain threshold measurement. Scientific Reports (Nature).
  36. Liew, B. X. W., Rügamer, D., De Nunzio, A., & Falla, D. (2021). Harnessing time-series kinematic and electromyography signals as predictors to discriminate amongst low back pain recovery status. Brain and Spine, 1, 100236.
  37. Liew, B. X. W., Peolsson, A., Rügamer, D., Wibault, J., Löfgren, H., Dedering, A., Zsigmond, P., & Falla, D. (2020). Clinical predictive modelling of post-surgical recovery in individuals with cervical radiculopathy – a machine learning approach. Scientific Reports.
    link
  38. Schratz, P., Muenchow, J., Iturritxa, E., Cortés, J., Bischl, B., & Brenning, A. (2020). Monitoring forest health using hyperspectral imagery: Does feature selection improve the performance of machine-learning techniques?
    link
  39. Bender, A., Python, A., Lindsay, S. W., Golding, N., & Moyes, C. L. (2020). Modelling geospatial distributions of the triatomine vectors of Trypanosoma cruzi in Latin America. PLOS Neglected Tropical Diseases, 14(8), e0008411. https://doi.org/10.1371/journal.pntd.0008411
  40. Dorigatti, E., & Schubert, B. (2020). Joint epitope selection and spacer design for string-of-beads vaccines. BioRxiv. https://doi.org/10.1101/2020.04.25.060988
  41. Pfister, F. M. J., Um, T. T., Pichler, D. C., Goschenhofer, J., Abedinpour, K., Lang, M., Endo, S., Ceballos-Baumann, A. O., Hirche, S., Bischl, B., & others. (2020). High-Resolution Motor State Detection in parkinson’s Disease Using convolutional neural networks. Scientific Reports, 10(1), 1–11.
    link
  42. Liew, B. X. W., Rügamer, D., Stöcker, A., & De Nunzio, A. M. (2020). Classifying neck pain status using scalar and functional biomechanical variables – development of a method using functional data boosting. Gait & Posture, 75, 146–150.
    link
  43. Liew, B. X. W., Rügamer, D., Abichandani, D., & De Nunzio, A. M. (2020). Classifying individuals with and without patellofemoral pain syndrome using ground force profiles – Development of a method using functional data boosting. Gait & Posture, 80, 90–95.
    link
  44. Dorigatti, E., & Schubert, B. (2020). Graph-theoretical formulation of the generalized epitope-based vaccine design problem. PLOS Computational Biology, 16(10), e1008237. https://doi.org/10.1371/journal.pcbi.1008237
  45. Liew, B., Rügamer, D., De Nunzio, A., & Falla, D. (2020). Interpretable machine learning models for classifying low back pain status using functional physiological variables. European Spine Journal, 29, 1845–1859.
    link
  46. Stachl, C., Au, Q., Schoedel, R., Gosling, S. D., Harari, G. M., Buschek, D., Völkel, S. T., Schuwerk, T., Oldemeier, M., Ullmann, T., & others. (2020). Predicting personality from patterns of behavior collected with smartphones. Proceedings of the National Academy of Sciences.
    link | pdf
  47. Stachl, C., Au, Q., Schoedel, R., Buschek, D., Völkel, S., Schuwerk, T., Oldemeier, M., Ullmann, T., Hussmann, H., Bischl, B., & Bühner, M. (2019). Behavioral Patterns in Smartphone Usage Predict Big Five Personality Traits. https://doi.org/10.31234/osf.io/ks4vd
  48. Goschenhofer, J., Pfister, F. M. J., Yuksel, K. A., Bischl, B., Fietzek, U., & Thomas, J. (2019). Wearable-based Parkinson’s Disease Severity Monitoring using Deep Learning. Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019, 400–415.
    link | pdf
  49. König, G., & Grosse-Wentrup, M. (2019). A Causal Perspective on Challenges for AI in Precision Medicine.
    link
  50. Pfister, F. M. J., von Schumann, A., Bemetz, J., Thomas, J., Ceballos-Baumann, A., Bischl, B., & Fietzek, U. (2019). Recognition of subjects with early-stage Parkinson from free-living unilateral wrist-sensor data using a hierarchical machine learning model. JOURNAL OF NEURAL TRANSMISSION, 126(5), 663–663.
  51. Schuwerk, T., Kaltefleiter, L. J., Au, J.-Q., Hoesl, A., & Stachl, C. (2019). Enter the Wild: Autistic Traits and Their Relationship to Mentalizing and Social Interaction in Everyday Life. Journal of Autism and Developmental Disorders. https://doi.org/10.1007/s10803-019-04134-6
  52. Völkel, S. T., Schödel, R., Buschek, D., Stachl, C., Au, Q., Bischl, B., Bühner, M., & Hussmann, H. (2019). Opportunities and challenges of utilizing personality traits for personalization in HCI. Personalized Human-Computer Interaction, 31–65.
    link
  53. Fossati, M., Dorigatti, E., & Giuliano, C. (2018). N-ary relation extraction for simultaneous T-Box and A-Box knowledge base augmentation. Semantic Web, 9(4), 413–439. https://doi.org/10.3233/SW-170269
  54. Casalicchio, G., Lesaffre, E., Küchenhoff, H., & Bruyneel, L. (2017). Nonlinear Analysis to Detect if Excellent Nursing Work Environments Have Highest Well-Being. Journal of Nursing Scholarship, 49(5), 537–547.
    link | pdf
  55. Rietzler, M., Geiselhart, F., Thomas, J., & Rukzio, E. (2016). FusionKit: a generic toolkit for skeleton, marker and rigid-body tracking. Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive Computing Systems, 73–84.
    link
  56. Bergmann, S., Ziegler, N., Bartels, T., Hübel, J., Schumacher, C., Rauch, E., Brandl, S., Bender, A., Casalicchio, G., Krautwald-Junghanns, M.-E., & others. (2013). Prevalence and severity of foot pad alterations in German turkey poults during the early rearing phase. Poultry Science, 92(5), 1171–1176.
    link | pdf
  57. Ziegler, N., Bergmann, S., Huebei, J., Bartels, T., Schumacher, C., Bender, A., Casalicchio, G., Kuechenhoff, H., Krautwald-Junghanns, M.-E., & Erhard, M. (2013). Climate parameters and the influence on the foot pad health status of fattening turkeys BUT 6 during the early rearing phase. BERLINER UND MUNCHENER TIERARZTLICHE WOCHENSCHRIFT, 126(5–6), 181–188.
    link | pdf
  58. Rueger, S., Goschenhofer, J., Nath, A., Firsching, M., Ennen, A., & Bischl, B. (2022). Deep-Learning-based Aluminum Sorting on Dual Energy X-Ray Transmission Data. Sensor-Based Sorting and Control. https://doi.org/10.2370/9783844085457