Andreas Bender

About

I am a postdoctoral researcher and lecturer at the Department of Statistics at LMU Munich at the Chair of Statistical Learning and Data Science and senior consultant at the Statistical Consulting Unit (StaBLab). I have a Ph.D. (Dr.rer.nat.) in Statistics. After my Ph.D. I was a Postdoc at the Big Data Institute, University of Oxford, working on spatial analysis in the context of infectious disease mapping. I am member of the LMU Open Science Center and mlr-org.

You can find more information about me on my personal website.

Contact

Institut für Statistik

Ludwig-Maximilians-Universität München

Ludwigstraße 33

D-80539 München

Andreas.Bender [at] stat.uni-muenchen.de

(+49)89 2180 3351

Teaching

Research Interests

You Can Find me on

Software/Projects

References

  1. Python A, Bender A, Blangiardo M et al. (2021) A Downscaling Approach to Compare COVID-19 Count Data from Databases Aggregated at Different Spatial Scales. Journal of the Royal Statistical Society: Series A (Statistics in Society).
    link | pdf
    .
  2. Bauer A, Klima A, Gauß J, Kümpel H, Bender A, Küchenhoff H (2021) Mundus Vult Decipi, Ergo Decipiatur: Visual Communication of Uncertainty in Election Polls. PS: Political Science & Politics, 1–7.
    link|pdf
    .
  3. Fabritius MP, Seidensticker M, Rueckel J et al. (2021) Bi-Centric Independent Validation of Outcome Prediction after Radioembolization of Primary and Secondary Liver Cancer. Journal of Clinical Medicine 10, 3668.
    link|pdf
    .
  4. Python A, Bender A, Nandi AK et al. (2021) Predicting non-state terrorism worldwide. Science Advances 7, eabg4778.
    link|pdf
    .
  5. Ramjith J, Bender A, Roes KCB, Jonker MA (2021) Recurrent Events Analysis with Piece-wise exponential Additive Mixed Models. Research Square.
    link|pdf
    .
  6. Kopper P, Pölsterl S, Wachinger C, Bischl B, Bender A, Rügamer D (2021) Semi-Structured Deep Piecewise Exponential Models. In: In: Greiner R , In: Kumar N , In: Gerds TA , In: Schaar M van der (eds) Proceedings of AAAI Spring Symposium on Survival Prediction - Algorithms, Challenges, and Applications 2021, pp. 40–53. PMLR.
    link|pdf
    .
  7. Küchenhoff H, Günther F, Höhle M, Bender A (2021) Analysis of the early COVID-19 epidemic curve in Germany by regression models with change points. Epidemiology & Infection, 1–17.
    link|pdf
    .
  8. Bender A, Rügamer D, Scheipl F, Bischl B (2021) A General Machine Learning Framework for Survival Analysis. In: In: Hutter F , In: Kersting K , In: Lijffijt J , In: Valera I (eds) Machine Learning and Knowledge Discovery in Databases, pp. 158–173. Springer International Publishing.
    link | pdf
    .
  9. Kopper P, Pölsterl S, Wachinger C, Bischl B, Bender A, Rügamer D (2021) Semi-Structured Deep Piecewise Exponential Models. AAAI Spring Symposium 2021: Survival Prediction: Algorithms, Challenges and Applications.
    link|pdf
    .
  10. Sonabend R, Király FJ, Bender A, Bischl B, Lang M (2021) mlr3proba: An R Package for Machine Learning in Survival Analysis. Bioinformatics.
    link|pdf
    .
  11. Günther F, Bender A, Katz K, Küchenhoff H, Höhle M (2020) Nowcasting the COVID-19 pandemic in Bavaria. Biometrical Journal.
    link|pdf
    .
  12. Guenther F, Bender A, Höhle M, Wildner M, Küchenhoff H (2020) Analysis of the COVID-19 pandemic in Bavaria: adjusting for misclassification. medRxiv, 2020.09.29.20203877.
    link|pdf
    .
  13. Sonabend R, Király FJ, Bender A, Bischl B, Lang M (2020) mlr3proba: Machine Learning Survival Analysis in R. arXiv:2008.08080 [cs, stat].
    link|pdf
    .
  14. Bender A, Python A, Lindsay SW, Golding N, Moyes CL (2020) Modelling geospatial distributions of the triatomine vectors of Trypanosoma cruzi in Latin America. PLOS Neglected Tropical Diseases 14, e0008411.
    link|pdf
    .
  15. Bauer A, Bender A, Klima A, Küchenhoff H (2019) KOALA: a new paradigm for election coverage. AStA Advances in Statistical Analysis.
    link|pdf
    .
  16. Bender A, Bauer A (2018) coalitions: Coalition probabilities in multi-party democracies.
    link|pdf
    .
  17. Bender A, Groll A, Scheipl F (2018) A generalized additive model approach to time-to-event analysis. Statistical Modelling 18, 299–321.
    link|pdf
    .
  18. Bender A, Scheipl F (2018) pammtools: Piece-wise exponential Additive Mixed Modeling tools. arXiv:1806.01042 [stat].
    link| pdf
    .
  19. Bender A, Scheipl F, Hartl W, Day AG, Küchenhoff H (2018) Penalized estimation of complex, non-linear exposure-lag-response associations. Biostatistics.
    link|pdf
    .
  20. Hartl WH, Bender A, Scheipl F, Kuppinger D, Day AG, Küchenhoff H (2018) Calorie intake and short-term survival of critically ill patients. Clinical Nutrition.
    link
    .
  21. Pratschke S, Bender A, Boesch F et al. (2018) Association between donor age and risk of graft failure after liver transplantation: An analysis of the Eurotransplant database - a retrospective cohort study. Transplant International 0.
    link
    .
  22. Maierhofer T, Pfisterer F, Bender A et al. (2017) Kosten als Instrument zur Effizienzbeurteilung intensivmedizinischer Funktionseinheiten. Medizinische Klinik - Intensivmedizin und Notfallmedizin, 1–7.
    link
    .
  23. Brandl S, Falk W, Klemmt H-J et al. (2014) Possibilities and Limitations of Spatially Explicit Site Index Modelling for Spruce Based on National Forest Inventory Data and Digital Maps of Soil and Climate in Bavaria (SE Germany). Forests 5, 2626–2646.
    link
    .
  24. Ruëff F, Vos B, Oude Elberink J et al. (2014) Predictors of clinical effectiveness of Hymenoptera venom immunotherapy. Clinical & Experimental Allergy 44, 736–746.
    link
    .
  25. Guillemot V, Bender A, Boulesteix A-L (2013) Iterative Reconstruction of High-Dimensional Gaussian Graphical Models Based on a New Method to Estimate Partial Correlations under Constraints. PLoS ONE 8, e60536.
    link
    .
  26. Kuppinger D, Hartl WH, Bertok M et al. (2013) Nutritional screening for risk prediction in patients scheduled for extra-abdominal surgery. Nutrition 29, 399–404.
    link
    .
  27. Boulesteix A-L, Bender A, Lorenzo Bermejo J, Strobl C (2012) Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations. Briefings in Bioinformatics 13, 292–304.
    link
    .