Machine Learning Consulting Unit

Mission Statement

Our primary goal is to provide consulting to applied sciences, for example medicine, psychology, biology and others. We aim to provide solutions, that based on our experience and expertise are most suitable to answer the research question at hand.

The Machine Learning Consulting Unit (MLCU) is part of the Munich Center for Machine Learning (MCML) and offers applied researchers scientific consulting regarding the application and evaluation of machine learning methods. Consulting is free of charge (ca. 8h per project) for members of the MCML and the LMU. Consulting outside the MCML and LMU is also possible, but needs to be negotiated on a case by case basis. We also welcome joint research projects with the goal of publication and other forms of cooperation.


If you are interested in consulting, see contact information below. Experience shows, that it is advisable to register for consulting as early in the project as possible or even at the planning stage.

Contact

If you are interested in consulting, please register using our webform.

For other request contact mlcu[at]stat.uni-muenchen.de

For statistical consulting also consider contacting the Statistical Consulting Unit (StaBLab).

Recent and Current Projects

Selection of projects (see also publications list below) that resulted from consulting requests in the past

Our team

Name       Position
Dr. Andreas Bender       Head
Prof. Bernd Bischl       Principal Investigator
Prof. David Rügamer       Professor for Data Science
Dr. Ludwig Bothmann       PostDoc

Publications

  1. Chemery C, Edelhoff H, Bothmann L (2026) Beyond Off-the-Shelf Models: A Lightweight and Accessible Machine Learning Pipeline for Ecologists Working with Image Data arXiv preprint 2601.15813,
    link|pdf
    .
  2. Xu Q, Rügamer D, Bender A, Maros ME (2026) Deep Generative Models in Digital Subtraction Angiography (DSA) and X-ray Angiography: A Systematic Review. Artificial Intelligence Review 59.
    link|pdf
    .
  3. Özeren E, Ulbrich A, Filimon S, Rügamer D, Bender A (2026) Enhancing Traffic Accident Classifications: Application of NLP Methods for City Safety. In: In: Dutra I , In: Pechenizkiy M , In: Cortez P , In: Pashami S , In: Pasquali A , In: Moniz N , In: Jorge AM , In: Soares C , In: Abreu PH , In: Gama J (eds) Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track and Demo Track, pp. 180–195. Springer Nature Switzerland, Cham.
    link|pdf
    .
  4. Walter E, Brock T, Lahoud P, Werner N, Czaja F, Tichy A, Bumm C, Bender A, Castro A, Teughels W, Schwendicke F, Folwaczny M (2025) Predictive Modeling for Step II Therapy Response in Periodontitis - Model Development and Validation. npj Digital Medicine 8, 445.
    link|pdf
    .
  5. Santhanam N, Kim HE, Rügamer D, Bender A, Muthers S, Cho CG, Alonso A, Szabo K, Centner F-S, Wenz H, Ganslandt T, Platten M, Groden C, Neumaier M, Siegel F, Maros ME (2025) Machine Learning-Based Forecasting of Daily Acute Ischemic Stroke Admissions Using Weather Data. npj Digital Medicine 8, 225.
    link|pdf
    .
  6. Mittermeier A, Aßenmacher M, Schachtner B, Grosu S, Dakovic V, Kandratovich V, Sabel B, Ingrisch M (2024) Automatische ICD-10-Codierung. Die Radiologie, 1–7.
    link
    .
  7. Solderer A, Hicklin S, Aßenmacher M, Ender A, Schmidlin P (2024) Influence of an allogenic collagen scaffold on implant sites with thin supracrestal tissue height: a randomized clinical trial. Clinical Oral Investigations, 28, 313.
    link|pdf
    .
  8. Liew BXW, Pfisterer F, Rügamer D, Zhai X (2024) Strategies to optimise machine learning classification performance when using biomechanical features. Journal of Biomechanics, 111998.
    link
    .
  9. Ferry N, Dupont P, Bender A, Heurich M (2024) Introducing Recurrent Event Analyses to Assess Species Interactions Based on Camera-Trap Data: A Comparison with Time-to-First-Event Approaches. Methods in Ecology and Evolution 15, 1233–1246.
  10. Zumeta-Olaskoaga L, Bender A, Lee D-J (2024) Flexible Modelling of Time-Varying Exposures and Recurrent Events to Analyse Training Load Effects in Team Sports Injuries. Journal of the Royal Statistical Society Series C: Applied Statistics, qlae059.
    link|pdf
    .
  11. Weber T, Ingrisch M, Bischl B, Rügamer D (2024) Constrained Probabilistic Mask Learning for Task-specific Undersampled MRI Reconstruction Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
    link|pdf
    .
  12. Liew BXW, Rügamer D, Birn-Jeffery A (2023) Neuromechanical stabilisation of the centre of mass during running. Gait & Posture.
  13. Weber T, Ingrisch M, Bischl B, Rügamer D (2023) Unreading Race: Purging Protected Features from Chest X-ray Embeddings. arXiv:2311.01349.
    link|pdf
    .
  14. Liew BXW, Kovacs FM, Rügamer D, Royuela A (2023) Automatic Variable Selection Algorithms in Prognostic Factor Research in Neck Pain. Journal of Clinical Medicine 12.
  15. Ott F, Rügamer D, Heublein L, Bischl B, Mutschler C (2023) Auxiliary Cross-Modal Representation Learning With Triplet Loss Functions for Online Handwriting Recognition. IEEE Access 11, 94148–94172.
  16. Bothmann L, Wimmer L, Charrakh O, Weber T, Edelhoff H, Peters W, Nguyen H, Benjamin C, Menzel A (2023) Automated wildlife image classification: An active learning tool for ecological applications. Ecological Informatics 77.
    link|pdf
    .
  17. Liew BXW, Rügamer D, Mei Q, Altai Z, Zhu X, Zhai X, Cortes N (2023) Smooth and accurate predictions of joint contact force timeseries in gait using overparameterised deep neural networks. Frontiers in Bioengineering and Biotechnology: Biomechanics.
  18. Rath K, Rügamer D, Bischl B, Toussaint U von, Albert C (2023) Dependent state space Student-t processes for imputation and data augmentation in plasma diagnostics. Contributions to Plasma Physics.
  19. Gertheiss J, Rügamer D, Liew B, Greven S (2023) Functional Data Analysis: An Introduction and Recent Developments.
    link
    .
  20. Hartl WH, Kopper P, Xu L, Heller L, Mironov M, Wang R, Day AG, Elke G, Küchenhoff H, Bender A (2023) Relevance of Protein Intake for Weaning in the Mechanically Ventilated Critically Ill: Analysis of a Large International Database. Critical Care Medicine.
    link
    .
  21. Hendrix P, Sun CC, Brighton H, Bender A (2023) On the Connection Between Language Change and Language Processing. Cognitive Science 47, e13384.
    link|pdf
    .
  22. Coens F, Knops N, Tieken I, Vogelaar S, Bender A, Kim JJ, Krupka K, Pape L, Raes A, Tönshoff B, Prytula A, Registry C (2023) Time-Varying Determinants of Graft Failure in Pediatric Kidney Transplantation in Europe. Clinical Journal of the American Society of Nephrology.
    link
    .
  23. Vogel M, Aßenmacher M, Gubler A, Attin T, Schmidlin PR (2023) Cleaning potential of interdental brushes around orthodontic brackets-an in vitro investigation. Swiss Dental Journal 133.
    link|pdf
    .
  24. Ziegler I, Ma B, Nie E, Bischl B, Rügamer D, Schubert B, Dorigatti E (2022) What cleaves? Is proteasomal cleavage prediction reaching a ceiling? NeurIPS 2022 Workshop on Learning Meaningful Representations of Life (LMRL),
    link|pdf
    .
  25. Kaiser P, Rügamer D, Kern C (2022) Uncertainty as a key to fair data-driven decision making NeurIPS 2022 Workshop on Trustworthy and Socially Responsible Machine Learning (TSRML),
    link|pdf
    .
  26. Ghada W, Casellas E, Herbinger J, Garcia-Benadí A, Bothmann L, Estrella N, Bech J, Menzel A (2022) Stratiform and Convective Rain Classification Using Machine Learning Models and Micro Rain Radar. Remote Sensing 14.
    link
    .
  27. Rath K, Rügamer D, Bischl B, Toussaint U von, Rea C, Maris A, Granetz R, Albert C (2022) Data augmentation for disruption prediction via robust surrogate models. Journal of Plasma Physics.
  28. Mittermeier M, Weigert M, Rügamer D, Küchenhoff H, Ludwig R (2022) A Deep Learning Version of Hess & Brezowskys Classification of Großwetterlagen over Europe: Projection of Future Changes in a CMIP6 Large Ensemble. Environmental Research Letters.
  29. Beaudry G, Drouin O, Gravel J, Smyrnova A, Bender A, Orri M, Geoffroy M-C, Chadi N (2022) A Comparative Analysis of Pediatric Mental Health-Related Emergency Department Utilization in Montréal, Canada, before and during the COVID-19 Pandemic. Annals of General Psychiatry 21, 17.
    link|pdf
    .
  30. Liew BXW, Kovacs FM, Rügamer D, Royuela A (2022) Machine learning for prognostic modelling in individuals with non-specific neck pain. European Spine Journal.
  31. Hartl WH, Kopper P, Bender A, Scheipl F, Day AG, Elke G, Küchenhoff H (2022) Protein intake and outcome of critically ill patients: analysis of a large international database using piece-wise exponential additive mixed models. Critical Care 26, 7.
    link|pdf
    .
  32. Pretzsch E, Heinemann V, Stintzing S, Bender A, Chen S, Holch JW, Hofmann FO, Ren H, Bösch F, Küchenhoff H, Werner J, Angele MK (2022) EMT-Related Genes Have No Prognostic Relevance in Metastatic Colorectal Cancer as Opposed to Stage II/III: Analysis of the Randomised, Phase III Trial FIRE-3 (AIO KRK 0306; FIRE-3). Cancers 14, 5596.
    link|pdf
    .
  33. Liew BXW, Rügamer D, Duffy K, Taylor M, Jackson J (2021) The mechanical energetics of walking across the adult lifespan. PloS one 16, e0259817.
    link
    .
  34. Mittermeier M, Weigert M, Rügamer D (2021) Identifying the atmospheric drivers of drought and heat using a smoothed deep learning approach. NeurIPS 2021, Tackling Climate Change with Machine Learning.
    link|pdf
    .
  35. Weber T, Ingrisch M, Bischl B, Rügamer D (2021) Towards modelling hazard factors in unstructured data spaces using gradient-based latent interpolation. NeurIPS 2021 Workshops, Deep Generative Models and Downstream Applications.
    link|pdf
    .
  36. Weber T, Ingrisch M, Fabritius M, Bischl B, Rügamer D (2021) Survival-oriented embeddings for improving accessibility to complex data structures. NeurIPS 2021 Workshops, Bridging the Gap: From Machine Learning Research to Clinical Practice.
    link|pdf
    .
  37. Liew BXW, Rügamer D, Zhai XJ, Morris S, Netto K (2021) Comparing machine, deep, and transfer learning in predicting joint moments in running. Journal of Biomechanics.
  38. Ott F, Rügamer D, Heublein L, Bischl B, Mutschler C (2021) Joint Classification and Trajectory Regression of Online Handwriting using a Multi-Task Learning Approach Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
  39. Python A, Bender A, Blangiardo M, Illian JB, Lin Y, Liu B, Lucas TCD, Tan S, Wen Y, Svanidze D, Yin J (2021) A Downscaling Approach to Compare COVID-19 Count Data from Databases Aggregated at Different Spatial Scales. Journal of the Royal Statistical Society: Series A (Statistics in Society).
    link | pdf
    .
  40. Fabritius MP, Seidensticker M, Rueckel J, Heinze C, Pech M, Paprottka KJ, Paprottka PM, Topalis J, Bender A, Ricke J, Mittermeier A, Ingrisch M (2021) Bi-Centric Independent Validation of Outcome Prediction after Radioembolization of Primary and Secondary Liver Cancer. Journal of Clinical Medicine 10, 3668.
    link|pdf
    .
  41. Falla D, Devecchi V, Jimenez-Grande D, Rügamer D, Liew B (2021) Modern Machine Learning Approaches Applied in Spinal Pain Research. Journal of Electromyography and Kinesiology.
  42. Python A, Bender A, Nandi AK, Hancock PA, Arambepola R, Brandsch J, Lucas TCD (2021) Predicting non-state terrorism worldwide. Science Advances 7, eabg4778.
    link|pdf
    .
  43. Liew B, Lee HY, Rügamer D, Nunzio AMD, Heneghan NR, Falla D, Evans DW (2021) A novel metric of reliability in pressure pain threshold measurement. Scientific Reports (Nature).
  44. Küchenhoff H, Günther F, Höhle M, Bender A (2021) Analysis of the early COVID-19 epidemic curve in Germany by regression models with change points. Epidemiology & Infection, 1–17.
    link|pdf
    .
  45. Liew BXW, Rügamer D, De Nunzio A, Falla D (2021) Harnessing time-series kinematic and electromyography signals as predictors to discriminate amongst low back pain recovery status. Brain and Spine 1, 100236.
  46. Günther F, Bender A, Katz K, Küchenhoff H, Höhle M (2020) Nowcasting the COVID-19 pandemic in Bavaria. Biometrical Journal.
    link|pdf
    .
  47. Liew BXW, Peolsson A, Rügamer D, Wibault J, Löfgren H, Dedering A, Zsigmond P, Falla D (2020) Clinical predictive modelling of post-surgical recovery in individuals with cervical radiculopathy – a machine learning approach. Scientific Reports.
    link
    .
  48. Guenther F, Bender A, Höhle M, Wildner M, Küchenhoff H (2020) Analysis of the COVID-19 pandemic in Bavaria: adjusting for misclassification. medRxiv, 2020.09.29.20203877.
    link|pdf
    .
  49. Schratz P, Muenchow J, Iturritxa E, Cortés J, Bischl B, Brenning A (2020) Monitoring forest health using hyperspectral imagery: Does feature selection improve the performance of machine-learning techniques?
    link
    .
  50. Bender A, Python A, Lindsay SW, Golding N, Moyes CL (2020) Modelling geospatial distributions of the triatomine vectors of Trypanosoma cruzi in Latin America. PLOS Neglected Tropical Diseases 14, e0008411.
    link|pdf
    .
  51. Dorigatti E, Schubert B (2020) Joint epitope selection and spacer design for string-of-beads vaccines. bioRxiv.
    link | pdf
    .
  52. Pfister FMJ, Um TT, Pichler DC, Goschenhofer J, Abedinpour K, Lang M, Endo S, Ceballos-Baumann AO, Hirche S, Bischl B, others (2020) High-Resolution Motor State Detection in parkinson’s Disease Using convolutional neural networks. Scientific reports 10, 1–11.
    link
    .
  53. Liew BXW, Rügamer D, Stöcker A, De Nunzio AM (2020) Classifying neck pain status using scalar and functional biomechanical variables – development of a method using functional data boosting. Gait & Posture 75, 146–150.
    link
    .
  54. Liew BXW, Rügamer D, Abichandani D, De Nunzio AM (2020) Classifying individuals with and without patellofemoral pain syndrome using ground force profiles – Development of a method using functional data boosting. Gait & Posture 80, 90–95.
    link
    .
  55. Dorigatti E, Schubert B (2020) Graph-theoretical formulation of the generalized epitope-based vaccine design problem (RD Kouyos, Ed.). PLOS Computational Biology 16, e1008237.
    link | pdf
    .
  56. Liew B, Rügamer D, De Nunzio A, Falla D (2020) Interpretable machine learning models for classifying low back pain status using functional physiological variables. European Spine Journal 29, 1845–1859.
    link
    .
  57. Stachl C, Au Q, Schoedel R, Gosling SD, Harari GM, Buschek D, Völkel ST, Schuwerk T, Oldemeier M, Ullmann T, others (2020) Predicting personality from patterns of behavior collected with smartphones. Proceedings of the National Academy of Sciences.
    link | pdf
    .
  58. Stachl C, Au Q, Schoedel R, Buschek D, Völkel S, Schuwerk T, Oldemeier M, Ullmann T, Hussmann H, Bischl B, Bühner M (2019) Behavioral Patterns in Smartphone Usage Predict Big Five Personality Traits.
    link | pdf
    .
  59. Goschenhofer J, Pfister FMJ, Yuksel KA, Bischl B, Fietzek U, Thomas J (2019) Wearable-based Parkinson’s Disease Severity Monitoring using Deep Learning (U Brefeld, E Fromont, A Hotho, A Knobbe, M Maathuis, and C Robardet, Eds.). Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019, 400–415.
    link | pdf
    .
  60. König G, Grosse-Wentrup M (2019) A Causal Perspective on Challenges for AI in Precision Medicine.
    link
    .
  61. Pfister FMJ, Schumann A von, Bemetz J, Thomas J, Ceballos-Baumann A, Bischl B, Fietzek U (2019) Recognition of subjects with early-stage Parkinson from free-living unilateral wrist-sensor data using a hierarchical machine learning model JOURNAL OF NEURAL TRANSMISSION, pp. 663–663. SPRINGER WIEN SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA.
  62. Schuwerk T, Kaltefleiter LJ, Au J-Q, Hoesl A, Stachl C (2019) Enter the Wild: Autistic Traits and Their Relationship to Mentalizing and Social Interaction in Everyday Life. Journal of Autism and Developmental Disorders.
    link
    .
  63. Völkel ST, Schödel R, Buschek D, Stachl C, Au Q, Bischl B, Bühner M, Hussmann H (2019) Opportunities and challenges of utilizing personality traits for personalization in HCI. Personalized Human-Computer Interaction, 31–65.
    link
    .
  64. Pratschke S, Bender A, Boesch F, Andrassy J, Rosmalen Mvan, Samuel U, Rogiers X, Meiser B, Küchenhoff H, Driesslein D, Werner J, Guba M, Angele MK (2018) Association between donor age and risk of graft failure after liver transplantation: An analysis of the Eurotransplant database - a retrospective cohort study. Transplant International 0.
    link|pdf
    .
  65. Hartl WH, Bender A, Scheipl F, Kuppinger D, Day AG, Küchenhoff H (2018) Calorie intake and short-term survival of critically ill patients. Clinical Nutrition.
    link
    .
  66. Fossati M, Dorigatti E, Giuliano C (2018) N-ary relation extraction for simultaneous T-Box and A-Box knowledge base augmentation (PE Cimiano, Ed.). Semantic Web 9, 413–439.
    link | pdf
    .
  67. Casalicchio G, Lesaffre E, Küchenhoff H, Bruyneel L (2017) Nonlinear Analysis to Detect if Excellent Nursing Work Environments Have Highest Well-Being. Journal of Nursing Scholarship 49, 537–547.
    link | pdf
    .
  68. Rietzler M, Geiselhart F, Thomas J, Rukzio E (2016) FusionKit: a generic toolkit for skeleton, marker and rigid-body tracking Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive Computing Systems, pp. 73–84. ACM.
    link
    .
  69. Bergmann S, Ziegler N, Bartels T, Hübel J, Schumacher C, Rauch E, Brandl S, Bender A, Casalicchio G, Krautwald-Junghanns M-E, others (2013) Prevalence and severity of foot pad alterations in German turkey poults during the early rearing phase. Poultry science 92, 1171–1176.
    link | pdf
    .
  70. Ziegler N, Bergmann S, Huebei J, Bartels T, Schumacher C, Bender A, Casalicchio G, Kuechenhoff H, Krautwald-Junghanns M-E, Erhard M (2013) Climate parameters and the influence on the foot pad health status of fattening turkeys BUT 6 during the early rearing phase. BERLINER UND MUNCHENER TIERARZTLICHE WOCHENSCHRIFT 126, 181–188.
    link | pdf
    .
  71. Rueger S, Goschenhofer J, Nath A, Firsching M, Ennen A, Bischl B (2022) Deep-Learning-based Aluminum Sorting on Dual Energy X-Ray Transmission Data. Sensor-based Sorting and Control.
    link|pdf
    .