Causal and Fair Machine Learning
This group focuses on methodological and applied research in the context of causal questions in machine learning and on fairness in machine learning. Topics include
- fairness-aware machine learning, especially with a causal focus,
- heterogeneous treatment effects,
- counterfactual explanations,
- causal inference,
- applications in social sciences and econometrics.
Our research group holds a regular journal club focused on the latest advancements in causality and fairness as published in machine learning conferences and journals. This journal club is open for guests; please contact Ludwig Bothmann if you are interested in joining.
Members
Name | Position | |||
---|---|---|---|---|
Dr. Ludwig Bothmann | Lead | |||
Dr. Matthias Aßenmacher | PostDoc | |||
Philip Boustani | PhD Student | |||
Simon Rittel | PhD Student | |||
Lisa Wimmer | PhD Student | |||
Helena Veit | BA Student |
Alumni
Name | Position | |||
---|---|---|---|---|
Dr. Gunnar König | University of Tübingen | |||
Dr. Susanne Dandl | University of Zurich |
Publications
- Bothmann L, Peters K (2024) Fairness als Qualitätskriterium im Maschinellen Lernen – Rekonstruktion des philosophischen Konzepts und Implikationen für die Nutzung außergesetzlicher Merkmale bei qualifizierten Mietspiegeln. AStA Wirtschafts- und Sozialstatistisches Archiv.
link|pdf. - Bothmann L, Peters K (2024) Fairness von KI – ein Brückenschlag zwischen Philosophie und Maschinellem Lernen. In: In: Rathgeber B , In: Maier M (eds) Grenzen Künstlicher Intelligenz,
- Ronval B, Nijssen S, Bothmann L (2024) Can generative AI-based data balancing mitigate unfairness issues in Machine Learning? EWAF’24: European Workshop on Algorithmic Fairness,
- Weerts H, Pfisterer F, Feurer M, Eggensperger K, Bergman E, Awad N, Vanschoren J, Pechenizkiy M, Bischl B, Hutter F (2024) Can Fairness be Automated? Guidelines and Opportunities for Fairness-aware AutoML. Journal of Artificial Intelligence Research 79, 639–677.
link|pdf. - Dandl S, Haslinger C, Hothorn T, Seibold H, Sverdrup E, Wager S, Zeileis A (2024) What Makes Forest-Based Heterogeneous Treatment Effect Estimators Work? The Annals of Applied Statistics 18, 506–528.
link. - Bothmann L, Peters K, Bischl B (2024) What Is Fairness? On the Role of Protected Attributes and Fictitious Worlds. arXiv:2205.09622 [cs, stat].
link. - Dandl S, Bender A, Hothorn T (2024) Heterogeneous treatment effect estimation for observational data using model-based forests. Statistical Methods in Medical Research 33, 392–413.
link. - Bothmann L, Dandl S, Schomaker M (2023) Causal Fair Machine Learning via Rank-Preserving Interventional Distributions Proceedings of the 1st Workshop on Fairness and Bias in AI co-located with 26th European Conference on Artificial Intelligence (ECAI 2023), CEUR Workshop Proceedings.
link|pdf. - Öztürk IT, Nedelchev R, Heumann C, Garces Arias E, Roger M, Bischl B, Aßenmacher M (2023) How Different Is Stereotypical Bias Across Languages? 3rd Workshop on Bias and Fairness in AI (co-located with ECML-PKDD 2023),
link|pdf. - König G, Freiesleben T, Grosse-Wentrup M (2023) Improvement-focused Causal Recourse (ICR) 37th AAAI Conference,
- Luther C, König G, Grosse-Wentrup M (2023) Efficient SAGE Estimation via Causal Structure Learning AISTATS,
- Urchs S, Thurner V, Aßenmacher M, Heumann C, Thiemichen S (2023) How Prevalent is Gender Bias in ChatGPT? - Exploring German and English ChatGPT Responses 1st Workshop on Biased Data in Conversational Agents (co-located with ECML-PKDD 2023),
link|pdf. - Bothmann L (2022) Künstliche Intelligenz in der Strafverfolgung. In: In: Peters K (ed) Cyberkriminalität, LMU Munich, Munich.
link. - Dandl S, Pfisterer F, Bischl B (2022) Multi-Objective Counterfactual Fairness Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 328–331. Association for Computing Machinery, New York, NY, USA.
link. - König G, Grosse-Wentrup M (2019) A Causal Perspective on Challenges for AI in Precision Medicine.
link.
Contact
Feel free to contact us if you are looking for collaborations:
ludwig.bothmann [at] stat.uni-muenchen.de