Boosting
This group focuses on methodological research and application of gradient boosting. Topics include
-
Uncertainty Quantification in Gradient Boosting
-
Bayesian Boosting
-
Variants of (component-wise) gradient boosting that facilitate interpretability
-
Multiclass Boosting
-
Boosting for Survival
Members
Name | Position | |||
---|---|---|---|---|
Prof. Dr. David Rügamer | Lead | |||
Stefan Coors | PhD Student | |||
Susanne Dandl | PhD Student | |||
Florian Pfisterer | PhD Student | |||
Tobias Pielok | PhD Student | |||
Daniel Schalk | PhD Student |
Publications
- Schalk D, Bischl B, Rügamer D (2022) Accelerated Componentwise Gradient Boosting using Efficient Data Representation and Momentum-based Optimization. Journal of Computational and Graphical Statistics.
link | pdf . - Pfisterer F, Kern C, Dandl S, Sun M, Kim MP, Bischl B (2021) mcboost: Multi-Calibration Boosting for R. Journal of Open Source Software 6, 3453.
link. - *Coors S, *Schalk D, Bischl B, Rügamer D (2021) Automatic Componentwise Boosting: An Interpretable AutoML System. ECML-PKDD Workshop on Automating Data Science.
link | pdf . - Rügamer D, Greven S (2020) Inference for L2-Boosting. Statistics and Computing 30, 279–289.
link|pdf. - Liew BXW, Rügamer D, Stöcker A, De Nunzio AM (2020) Classifying neck pain status using scalar and functional biomechanical variables – development of a method using functional data boosting. Gait & Posture 75, 146–150.
link. - Liew BXW, Rügamer D, Abichandani D, De Nunzio AM (2020) Classifying individuals with and without patellofemoral pain syndrome using ground force profiles – Development of a method using functional data boosting. Gait & Posture 80, 90–95.
link. - Brockhaus S, Rügamer D, Greven S (2020) Boosting Functional Regression Models with FDboost. Journal of Statistical Software 94, 1–50.
- Au Q, Schalk D, Casalicchio G, Schoedel R, Stachl C, Bischl B (2019) Component-Wise Boosting of Targets for Multi-Output Prediction. arXiv preprint arXiv:1904.03943.
link | pdf. - Thomas J, Mayr A, Bischl B, Schmid M, Smith A, Hofner B (2018) Gradient boosting for distributional regression: faster tuning and improved variable selection via noncyclical updates. Statistics and Computing 28, 673–687.
link | pdf . - Thomas J, Coors S, Bischl B (2018) Automatic Gradient Boosting. ICML AutoML Workshop.
link | pdf. - Schalk D, Thomas J, Bischl B (2018) compboost: Modular Framework for Component-Wise Boosting. JOSS 3, 967.
link | pdf. - Thomas J, Hepp T, Mayr A, Bischl B (2017) Probing for sparse and fast variable selection with model-based boosting. Computational and mathematical methods in medicine 2017.
link | pdf.