Ludwig Bothmann

About

I am a postdoctoral researcher at the Chair of Statistical Learning and Data Science in the Department of Statistics at the LMU Munich. I have a Diploma Degree (Dipl. - Stat.) in Statistics and a PhD (Dr. rer. nat.) in Statistics with focus on efficient statistical analysis of video and image data. During my PhD I worked at the Chair of Applied Statistics in Social Sciences, Economics and Business at the LMU, under the supervision of Prof. Dr. Göran Kauermann. Afterwards I worked for nearly three years as Data Scientist and Data Science Lead for an insurance company, implementing various data science use cases from first idea to production.
Since August 2020, I am part of this chair. My main research interests include fairML, uncertainty quantification, causal inference, interpretable ML and application of ML and DL in other sciences. I am leading the research group on Causal and Fair Machine Learning. I am junior member of the Munich Center for Machine Learning (MCML) and founding member of its Machine Learning Consulting Unit (MLCU).

Contact

Institut für Statistik

Ludwig-Maximilians-Universität München

Ludwigstraße 33

D-80539 München

Ludwig.Bothmann [at] stat.uni-muenchen.de

You Can Find me on

Teaching

Prior teaching:

Talks

Media Coverage

References

  1. Wimmer, L., Bischl, B. & Bothmann, L. (2025). Trust Me, I Know the Way: Predictive Uncertainty in the Presence of Shortcut Learning. Workshop on Spurious Correlation and Shortcut Learning: Foundations and Solutions at ICLR.
    link
  2. Surner, M., Khelil, A., & Bothmann, L. (2025). Invariance Pair-Guided Learning: Enhancing Robustness in Neural Networks. arXiv:2502.18975.
    link
  3. Bothmann, L., Boustani, P.A., Alvarez, J.M., Casalicchio, G., Bischl, B. & Dandl, S. (2025). Privilege Scores. arXiv:2502.01211.
    link
  4. Leininger, C., Rittel, S., & Bothmann, L. (2025). Overcoming Fairness Trade-offs via Pre-processing: A Causal Perspective. arXiv:2501.14710.
    link
  5. Bothmann, L., & Peters, K. (2025). Fairness von KI – ein Brückenschlag zwischen Philosophie und Maschinellem Lernen. In: Rathgeber, B. & Maier, M. (Eds.), Grenzen Künstlicher Intelligenz. Kohlhammer, Stuttgart.
  6. Felderer, B., Repke, L., Weber, W., Schweisthal, J., & Bothmann, L. (2024). Predicting the validity and reliability of survey questions. osf preprints.
    link
  7. Ronval, B., Nijssen, S., & Bothmann, L. (2024). Can generative AI-based data balancing mitigate unfairness issues in Machine Learning? EWAF’24: European Workshop on Algorithmic Fairness.
    link
  8. Dandl, S., Becker, M., Bischl, B., Casalicchio, G., & Bothmann, L. (2024). mlr3summary: Concise and interpretable summaries for machine learning models. Accepted at 2nd World Conference on eXplainable Artificial Intelligence 2024 (Demo Track).
    link
  9. Ewald, F., Bothmann, L., Wright, M., Bischl, B., Casalicchio, G., & König, G. (2024). A Guide to Feature Importance Methods for Scientific Inference. In: Longo, L., Lapuschkin, S., Seifert, C. (eds) Explainable Artificial Intelligence. xAI 2024. Communications in Computer and Information Science, vol 2154. Springer.
    link
  10. Bothmann, L., & Peters, K. (2024). Fairness als Qualitätskriterium im Maschinellen Lernen – Rekonstruktion des philosophischen Konzepts und Implikationen für die Nutzung außergesetzlicher Merkmale bei qualifizierten Mietspiegeln. AStA Wirtschafts- und Sozialstatistisches Archiv.
    link
  11. Sommer, E., Wimmer, L., Papamarkou, T., Bothmann, L., Bischl, B., & Rügamer, D. (2024). Connecting the Dots: Is Mode-Connectedness the Key to Feasible Sample-Based Inference in Bayesian Neural Networks? Accepted at International Conference on Machine Learning (ICML) 2024.
    link
  12. Bothmann, L., Peters, K., & Bischl, B. (2024). What Is Fairness? On the Role of Protected Attributes and Fictitious Worlds. arXiv:2205.09622.
    link
  13. Hornung, R., Nalenz, M., Schneider, L., Bender, A., Bothmann, L., Bischl, B., Augustin, T., & Boulesteix, A-L. (2023) Evaluating machine learning models in non-standard settings: An overview and new findings. Accepted at Statistical Science.
    link
  14. Bothmann, L., Dandl, S., & Schomaker, M. (2023) Causal Fair Machine Learning via Rank-Preserving Interventional Distributions. Proceedings of the 1st Workshop on Fairness and Bias in AI co-located with 26th European Conference on Artificial Intelligence (ECAI 2023), CEUR Workshop Proceedings, https://ceur-ws.org/Vol-3523/.
    link
  15. Dandl, S., Casalicchio, G., Bischl, B., & Bothmann, L. (2023) Interpretable Regional Descriptors: Hyperbox-Based Local Explanations. In: Koutra D, Plant C, Gomez Rodriguez M, Baralis E, Bonchi F (eds) ECML PKDD 2023: Machine Learning and Knowledge Discovery in Databases: Research Track, pp. 479–495. Springer Nature Switzerland, Cham.
    link
  16. Bothmann, L., Wimmer, L., Charrakh, O., Weber, T., Edelhoff, H., Peters, W., Nguyen, H., Benjamin, C., & Menzel, A. (2023). Automated wildlife image classification: An active learning tool for ecological applications. Ecological Informatics, 77(102231).
    link | arXiv
  17. Bothmann, L. (2022). Künstliche Intelligenz in der Strafverfolgung. In K. Peters (Ed.), Cyberkriminalität. LMU Munich.
    link
  18. Ghada, W., Casellas, E., Herbinger, J., Garcia-Benadí, A., Bothmann, L., Estrella, N., Bech, J., & Menzel, A. (2022). Stratiform and Convective Rain Classification Using Machine Learning Models and Micro Rain Radar. Remote Sensing, 14(18).
    link
  19. Bothmann, L., Strickroth, S., Casalicchio, G., Rügamer, D., Lindauer, M., Scheipl, F., & Bischl, B. (2022). Developing Open Source Educational Resources for Machine Learning and Data Science. Proceedings of the Third Teaching Machine Learning and Artificial Intelligence Workshop, PMLR 207:1-6 .
    link | pdf
  20. Matiu, M., Bothmann, L., Steinbrecher, R., & Menzel, A. (2017). Monitoring succession after a non-cleared windthrow in a Norway spruce mountain forest using webcam, satellite vegetation indices and turbulent CO 2 exchange. Agricultural and Forest Meteorology, 244–245, 72–81.
    link
  21. Bothmann, L., Menzel, A., Menze, B. H., Schunk, C., & Kauermann, G. (2017). Automated processing of webcam images for phenological classification. PLoS ONE, 12(2): e0171918.
    link
  22. Bothmann, L. (2016). Efficient statistical analysis of video and image data [PhD thesis, Ludwig-Maximilians-Universität München].
    link
  23. Bothmann, L., Windmann, M., & Kauermann, G. (2016). Realtime classification of fish in underwater sonar videos. Journal of the Royal Statistical Society: Series C (Applied Statistics), 65(4), 565–584.
    link
  24. Kalus, S., Bothmann, L., Yassouridis, C., Czisch, M., Sämann, P., & Fahrmeir, L. (2014). Statistical modeling of time-dependent fMRI activation effects. Human Brain Mapping, 36(2), 731–743.
    link
  25. Bothmann, L. (2012). Statistische Modellierung von EEG-abhängigen Stimuluseffekten in der fMRT-Analyse [Diploma Thesis].
    link