Lennart Schneider

About

I am a second year PhD student at the Chair of Statistical Learning and Data Science. I obtained an MSc degree in Statistics as well as an MSc degree in Psychology after studying Statistics (LMU Munich), Psychology and Mathematics (Eberhard Karls University of Tübingen).

Prior to joining as a PhD student, I worked as a student assistant doing software development within the mlr3 ecosystem. Moreover, I am author and maintainer of mlr3mbo - an R package for flexible Bayesian Optimization.

My main research interests are (hyperparameter) optimization, NAS and AutoML.

Contact

Institut für Statistik

Ludwig-Maximilians-Universität München

Ludwigstraße 33

D-80539 München

lennart.schneider [at] stat.uni-muenchen.de

Research Interests

You Can Find me on

References

  1. Schneider L, Schäpermeier L, Prager RP, Bischl B, Trautmann H, Kerschke P (2022) HPO X ELA: Investigating Hyperparameter Optimization Landscapes by Means of Exploratory Landscape Analysis. In: In: Rudolph G , In: Kononova AV , In: Aguirre H , In: Kerschke P , In: Ochoa G , In: Tušar T (eds) Parallel Problem Solving from Nature – PPSN XVII, pp. 575–589. Springer International Publishing, Cham.
    link | pdf
    .
  2. Karl F, Pielok T, Moosbauer J, Pfisterer F, Coors S, Binder M, Schneider L, Thomas J, Richter J, Lang M, others (2022) Multi-Objective Hyperparameter Optimization – An Overview. arXiv preprint arXiv:2206.07438.
    link | pdf
    .
  3. Schneider L, Pfisterer F, Thomas J, Bischl B (2022) A Collection of Quality Diversity Optimization Problems Derived from Hyperparameter Optimization of Machine Learning Models Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 2136–2142. Association for Computing Machinery, New York, NY, USA.
    link | pdf
    .
  4. Schneider L, Pfisterer F, Kent P, Branke J, Bischl B, Thomas J (2022) Tackling Neural Architecture Search With Quality Diversity Optimization International Conference on Automated Machine Learning, pp. 9–1. PMLR.
    link | pdf
    .
  5. Moosbauer J, Binder M, Schneider L, Pfisterer F, Becker M, Lang M, Kotthoff L, Bischl B (2022) Automated Benchmark-Driven Design and Explanation of Hyperparameter Optimizers. IEEE Transactions on Evolutionary Computation 26, 1336–1350.
    link | pdf
    .
  6. Pfisterer F, Schneider L, Moosbauer J, Binder M, Bischl B (2022) Yahpo Gym – An Efficient Multi-Objective Multi-Fidelity Benchmark for Hyperparameter Optimization International Conference on Automated Machine Learning, pp. 3–1. PMLR.
    link | pdf
    .
  7. Binder M, Pfisterer F, Lang M, Schneider L, Kotthoff L, Bischl B (2021) mlr3pipelines - Flexible Machine Learning Pipelines in R. Journal of Machine Learning Research 22, 1–7.
    link | pdf
    .
  8. Schneider L, Pfisterer F, Binder M, Bischl B (2021) Mutation is All You Need 8th ICML Workshop on Automated Machine Learning,
    pdf
    .