Philipp Kopper
About
I am a PhD student and research associate at the Chair of Statistical Learning and Data Science since spring 2020 at the Ludwig Maximilian University Munich.
I obtained a Bachelor's degree (B.Sc.) in Economics and a Master's degree (M.Sc.) in Statistics from the Ludwig Maximilian University Munich. My research interest is in the intersection of machine learning and statistics. I am particularly interested in deep learning and survival analysis at the moment.

Contact
Institut für Statistik
Ludwig-Maximilians-Universität München
Ludwigstraße 33
D-80539 München
philipp.kopper [at] stat.uni-muenchen.de
Research Interests
- Statistical Deep Learning
- Survival Analysis in Machine Learning
- Piece-wise exponential additive mixed models
You Can Find me on
References
- Sonabend R, Zobolas J, Kopper P, Burk L, Bender A (2024) Examining properness in the external validation of survival models with squared and logarithmic losses. arXiv preprint arXiv:2212.05260.
- Kopper P, Rügamer D, Sonabend R, Bischl B, Bender A (2024) Training Survival Models using Scoring Rules. arXiv preprint arXiv:2403.13150.
- Kook L, Kolb C, Schiele P, Dold D, Arpogaus M, Fritz C, Baumann PF, Kopper P, Pielok T, Dorigatti E, others (2024) How Inverse Conditional Flows Can Serve as a Substitute for Distributional Regression. arXiv preprint arXiv:2405.05429.
- Hartl WH, Kopper P, Xu L, Heller L, Mironov M, Wang R, Day AG, Elke G, Küchenhoff H, Bender A (2023) Relevance of Protein Intake for Weaning in the Mechanically Ventilated Critically Ill: Analysis of a Large International Database. Critical Care Medicine.
link. - Wiegrebe S, Kopper P, Sonabend R, Bischl B, Bender A (2023) Deep Learning for Survival Analysis: A Review.
link|pdf. - Kopper P, Wiegrebe S, Bischl B, Bender A, Rügamer D (2022) DeepPAMM: Deep Piecewise Exponential Additive Mixed Models for Complex Hazard Structures in Survival Analysis Advances in Knowledge Discovery and Data Mining, pp. 249–261. Springer International Publishing.
link|pdf. - Hartl WH, Kopper P, Bender A, Scheipl F, Day AG, Elke G, Küchenhoff H (2022) Protein intake and outcome of critically ill patients: analysis of a large international database using piece-wise exponential additive mixed models. Critical Care 26, 7.
link|pdf. - Seibold H, Nalenz M, Kopper P, Czerny S, Decke S, Dieterle R, Eder T, Fohr S, Hahn N, Hartmann R, Heindl C, others (2021) A computational reproducibility study of PLOS ONE articles featuring longitudinal data analyses. PLOS ONE 16, e0251194.
link. - Kopper P, Pölsterl S, Wachinger C, Bischl B, Bender A, Rügamer D (2021) Semi-Structured Deep Piecewise Exponential Models Proceedings of AAAI Spring Symposium on Survival Prediction - Algorithms, Challenges, and Applications 2021, pp. 40–53. PMLR.
link|pdf. - Kopper P (2019) Lime and neighborhood. In: In: Molnar C (ed) Limitations of Interpretable Machine Learning Methods,
link.