Susanne Dandl
About
I started as a PhD student at the Chair of Statistical Learning and Data Science of the Department of Statistics at the LMU in October 2019. My main research focus is on Causality Concepts in Machine Learning.
I obtained a Bachelor's Degree (B.Sc.) and Master's Degree (M.Sc.) in Statistics from the LMU.

Contact
Institut für Statistik
Ludwig-Maximilians-Universität München
Ludwigstraße 33
D-80539 München
Susanne.Dandl [at] stat.uni-muenchen.de
Research Interests
- Interpreting machine learning models with counterfactual explanations
- Estimating hetergeneous treatment effects with machine learning
You can find me on
References
- Dandl S, Casalicchio G, Bischl B, Bothmann L (2023) Interpretable Regional Descriptors: Hyperbox-Based Local Explanations. In: In: Koutra D , In: Plant C , In: Gomez Rodriguez M , In: Baralis E , In: Bonchi F (eds) Machine Learning and Knowledge Discovery in Databases: Research Track, pp. 479–495. Springer Nature Switzerland, Cham.
link. - Bothmann L, Dandl S, Schomaker M (2023) Causal Fair Machine Learning via Rank-Preserving Interventional Distributions. arXiv:2307.12797 [cs, stat].
link. - Dandl S, Hofheinz A, Binder M, Bischl B, Casalicchio G (2023) counterfactuals: An R Package for Counterfactual Explanation Methods. arXiv:2304.06569.
link|pdf. - Dandl S, Bender A, Hothorn T (2022) Heterogeneous Treatment Effect Estimation for Observational Data using Model-based Forests. arXiv:2210.02836
link. - Dandl S, Pfisterer F, Bischl B (2022) Multi-Objective Counterfactual Fairness Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 328–331. Association for Computing Machinery, New York, NY, USA.
link. - Dandl S, Hothorn T, Seibold H, Sverdrup E, Wager S, Zeileis A (2022) What Makes Forest-Based Heterogeneous Treatment Effect
Estimators Work? arXiv:2206.10323
link. - Molnar C, König G, Herbinger J, Freiesleben T, Dandl S, Scholbeck CA, Casalicchio G, Grosse-Wentrup M, Bischl B (2022) General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models xxAI - Beyond Explainable AI, pp. 39–68. Springer International Publishing.
link | pdf. - Pfisterer F, Kern C, Dandl S, Sun M, Kim MP, Bischl B (2021) mcboost: Multi-Calibration Boosting for R. Journal of Open Source Software 6, 3453.
link. - Dandl S, Molnar C, Binder M, Bischl B (2020) Multi-Objective Counterfactual Explanations. In: In: Bäck T , In: Preuss M , In: Deutz A , In: Wang H , In: Doerr C , In: Emmerich M , In: Trautmann H (eds) Parallel Problem Solving from Nature – PPSN XVI, pp. 448–469. Springer International Publishing, Cham.
link | video.