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Abstract
In this paper we aim at discriminating between two musical
instruments by means of different groups of audio features,
namely absolute amplitude envelope in the time domain as
well as MFCC, pitchless periodogram and simplified spec-
tral envelope in the spectral domain. For this task we uti-
lize common statistical classification algorithms and per-
form statistical tests to evaluate whether the discriminating
power of certain subsets of feature groups dominates other
group subsets. We also examine if it is possible to directly
select a useful set of groups by applying logistic regression
regularized by a group lasso penalty structure. Specifically,
we apply our methods to a data set of single piano and gui-
tar tones.

1 Description of Features
Each single tone consists of an audio signal x[n], n ∈
{1, . . . ,N}, of length 1.2s at sampling rate sr = 44100 Hz.
From this the following four feature vectors are calculated.
In general, the signal is windowed by half-overlapping seg-
ments ws, s ∈ {1, . . . ,25} of a size of 4096 samples.

1.1 Absolute Amplitude Envelope
To take the upper and lower part of the envelope into ac-
count the absolute values |x[n]| define the so-called abso-
lute amplitude envelope e ∈ IR1×132 by setting l =

⌊ N
400

⌋
·

400 as follows:

e =
(

max
1≤i≤400

{|x[i]|}, max
401≤i≤800

{|x[i]|}, . . . , max
l−399≤i≤l

{|x[i]|}
)

.

Note that here non-overlapping segments of size 400 are
used.

1.2 Pitchless Periodogram
The periodogram P of each window is calculated at fixed
frequencies {X1, . . . ,X2048}, sr/2

2048 ≤ xi ≤ sr
2 . Additionally

for each window the fundamental frequency is estimated
(called f̂0) so that overtones can be calculated as
f̂i = (i+1) · f̂0, i ∈ {0, . . . ,13}. For each fixed f̂i and each
window ws the periodogram values, i.e. the squared values
of the DFT,

Pws
f̂i

(xi), with | f̂i−X i|= min
1≤ j≤2048

| f̂i−X j|

∀s ∈ {1, . . . ,25}, ∀i ∈ {0, . . . ,13} are calculated. Medians
of blocks of five subsequent time windows are considered:

pr
i := median

(
Pwr

f̂i
(X i),Pwr+1

f̂i
(X i), . . . ,Pwr+4

f̂i
(X i)

)
for i ∈ {0, . . . ,13} and r ∈ {1,6,11,16,21}. The Pitchless
Periodogram v ∈ IR1×70 is then defined as

v =
(

p1
0, p1

1, . . . , p1
13, p6

0, . . . , p6
13, . . . , p21

0 , . . . , p21
13

)
.

This is called ”’pitchless”’, because v is independent of the
pitch and the distances X i+1−X i.

1.3 Mel Frequency Cepstral Coefficients
The power spectrum is calculated by a DFT using Ham-
ming windows and a subsequent log-transformation. After
mapping the powers of the spectrum onto the mel scale by
using triangular filters the discrete cosine transformation
is applied yielding the MFCC coefficients.

1.4 LPC Simplified Spectral Envelope
For each time window the coefficients of a pth-order lin-
ear predictor (FIR filter) are calculated with p = b2 +
sr/1000c = 46 (rule of thumb of formant estimation). So
the current value of the signal x[n] in segment k can be es-
timated by the past samples:

x̂k(n) =−ak
2xk(n−1)−ak

3xk(n−2)−·· ·−ak
p+1xk(n− p).

The 512-points complex frequency response vector H of
the filter can be interpreted as the transfer function evalu-
ated at z = eiω :

Hk(eiω) =

(
p+1

∑
l=1

ak
l e−iωl

)−1

, k ∈ {1, . . . ,25} ,ak
1 = 1

where ak
l are the linear predictor coefficients. This fre-

quency response is calculated for each time window k and
so yields a matrix K ∈ IR512×25, with K·, j = 20log10 |H j|,
j ∈ {1, . . . ,25}. With r ∈ {1,6,11,16,21} define

vr := median(K·,r,K·,r+1,K·,r+2,K·,r+3,K·,r+4) .

This yields V =
(
v1,v6,v11,v16,v21

)
∈ IR512×5. The Sim-

plified LPC Spectral Envelope s ∈ IR1×125 is then the max-
imum of each subsequent 20 rows of V :

s =
(

max
1≤ j≤20

{Vj,1}, max
21≤ j≤40

{Vj,1}, . . . , max
501≤ j≤512

{Vj,1},

...

max
1≤ j≤20

{Vj,21}, max
21≤ j≤40

{Vj,21}, . . . , max
481≤ j≤501

{Vj,21}
)

.

2 Statistical Modeling and Evaluation
In order to identify which of the above groups are most
useful to discriminate between tones of different musical
instruments, we do not employ a usual feature selection al-
gorithm. We are not primarily interested in an optimal set
of features chosen arbitrarily across all groups, but rather
want to statistically evaluate which of complete groups are
most useful for our classification task at hand. To put
it differently, we would like to identify a minimal set of



groups classifying optimally. This does not only reduce
runtime and storage requirements in applications, but also
stabilizes the fitting process of classification models, as the
number of features compared to the number of observa-
tions might be quite large. We follow a two-fold approach
to achieve these objectives.

2.1 Testing Generalization Performance
First, we employ the framework for benchmark experi-
ments by Hothorn et al. [6] to compare the discriminating
power of different sets of feature groups. By applying a
resampling strategy like bootstrapping or subsampling one
independently generates training sets from a given data set,
uses a classification algorithm to fit models on these, pre-
dicts the out-of-bag test samples and measures their perfor-
mance according to an appropriate loss function. This gen-
erates a population of performance values for every classi-
fier, which now can be compared by using standard sta-
tistical inference methodology. But instead of the usual
approach of fixing a certain set of features and then com-
paring the generalization performance of different kinds of
classifiers, we fix the classifier and then vary the sets of
features. We are generalizing a similar approach for a com-
parable setting in [14].

2.2 Group Lasso for Logistic Regression
The lasso penalty is a well-known way to directly encode
the aim of variable selection into the problem of minimiz-
ing the empirical error of a generalized linear predictor:

min
β ,β0

(
n

∑
i=1

L(yi,β
T xi +β0)+λ

p

∑
j=1
|βi|

)
.

Here, the first term is the empirical error on the training
data {(xi,yi)}n

i=1 from IRp×{0,1} , measured by some loss
function L(·, ·). If we set

L(y,x) =−y(β T x+β0)+ log(1+ exp(β T x+β0)) ,

i.e. to the negative log-likelihood of a logistic model and
ignore the second summand we arrive at simple logistic
regression. The second term penalizes large entries of the
coefficient vector β through the l1 norm. It is well-known
that for this specific norm the optimal estimator for β will
usually contain at least some zero entries, which can be
interpreted as an implicit form of feature selection [5]. The
constant λ controls the influence of the penalty term.
The group lasso for logistic regression [11] generalizes this
by penalizing disjoint groups of features individually by
the l2 norm, but combines all group terms with a penalty
of the l1 type

min
β ,β0

(
n

∑
i=1

L(yi,β
T xi +β0)+λ

G

∑
g=1
||βIg ||2

)
,

where Ig is an indicator function referring to the index set
of all features in group g. This achieves feature selection at
the group level. Both optimization problems for the simple
lasso and the group lasso are non-trivial to solve because
of the non-differentiability of the l1 norm. Therefore spe-
cial purpose algorithms have been developed, for the latter
problem often a group-coordinate version of gradient de-
scent is used [11].

3 Experimental Setup
For the experiment 4309 guitar and 1345 piano tones are
used. They are recorded as wav-files and arise in three dif-
ferent databases: McGill University Master Samples [10],
RWC Database [4] and the Musical Instrument Samples of
the University of Iowa [12]. The calculation of the total
407 features is carried out by using the MIRtoolbox [8] for
Matlab and the tuneR package [9] for the statistical pro-
gramming language R.
Using subsampling with 100 repetitions, we generate 100
out-of-bag performance values for each of the 24−1 = 15
possible sets of feature groups. As learning algorithms we
consider linear discriminant analysis (LDA), logistic re-
gression (LReg), decision trees (CART) and support vector
machines (SVM) with a radial basis kernel [5]. Hyperpa-
rameters for the SVM are tuned by nested resampling to
ensure unbiased estimates of the prediction performance.
To reduce runtime, hyperparameter optimization is per-
formed by Nelder-Mead with a heuristically selected, data-
dependent starting point from the training data. After de-
scriptively checking that the normality assumption for the
error terms holds at least approximately, we use a linear
mixed effects model to analyze significant differences in
performance between the feature groups [3]. Lastly, we
compare and contrast the results from these tests to the
groups selected by the group lasso. For all experiments
we use the mlr [1] package for machine learning in R, for
the all-pairs tests and order relations (see below) the bench-
mark package [3].

4 Results and Discussion
Table 1 shows the classification results for linear discrim-
inant analysis, logistic regression, decision trees and sup-
port vector machines and all different combinations of fea-
ture groups. (In the table and following figures these ab-
breviations are used: C = Pitchless Chromagram, E = Ab-
solute Amplitude Envelope, L = LPC Simplified Spectral
Envelope, M = MFCC.) We calculate the mean classifica-
tion error and the standard deviation as a measure of spread
for the respective predictions of the 100 test sets from sub-
sampling.
In figure 1 we report orderings of feature groups accord-
ing to significant differences in misclassification error. Per
learning algorithm, we generate a graph of partially or-
dered feature groups by including an edge between A
and B if feature group A significantly outperforms feature
group B, locating A below B in the figure.
One can see quite clearly that the MFCCs would be cho-
sen, if one would have to select a single feature group. This
confirms fact that MFCCs have already proven to be very
useful for classification tasks in speech processing [13] as
well as in musical instrument recognition [7], [15], [2] in
many other studies. Combining MFCCs with LPCs prob-
ably achieves the best trade-off between a low number of
groups and best predictive performance. By the chroma
and time envelope features a small gain can be achieved
only if they are added to the MFCC / LPC groups. The
best classification result of 0.9% error, significanlty out-
performing all other ones, is produced by SVM with the
MFCCs, LPCs and the time envelope features. CART re-
sults are most often worst.
These observations are essentially reproduced by the group
lasso results in figure 2. Along the solution path from a
large penalization parameter λ to a lower one, most useful
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Figure 1: Ordering of feature groups for considered classifiers.
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Figure 2: Coefficient paths for group lasso and penalty term per group. Path for intercept is shown in black in top plot.



LDA LReg CART SVM
mean mean mean mean
sd sd sd sd

C 0.205 0.197 0.122 0.182
0.010 0.012 0.010 0.011

E 0.215 0.206 0.173 0.171
0.011 0.011 0.011 0.010

C E 0.191 0.162 0.116 0.114
0.009 0.009 0.010 0.009

L 0.101 0.072 0.101 0.039
0.008 0.007 0.009 0.006

C L 0.096 0.068 0.080 0.051
0.008 0.007 0.009 0.006

E L 0.089 0.063 0.101 0.026
0.007 0.006 0.010 0.004

C E L 0.084 0.060 0.078 0.031
0.007 0.007 0.009 0.005

M 0.039 0.039 0.077 0.019
0.005 0.005 0.009 0.004

C M 0.035 0.033 0.061 0.030
0.005 0.005 0.008 0.005

E M 0.035 0.037 0.076 0.013
0.005 0.005 0.009 0.004

C E M 0.033 0.036 0.059 0.021
0.005 0.005 0.008 0.004

L M 0.028 0.028 0.068 0.012
0.004 0.004 0.008 0.003

C L M 0.025 0.026 0.049 0.022
0.004 0.005 0.006 0.004

E L M 0.024 0.021 0.068 0.009
0.004 0.004 0.008 0.003

C E L M 0.024 0.021 0.047 0.015
0.004 0.004 0.007 0.004

Table 1: Misclassification error on subsampling test sets.

groups for the model fit will enter the solution first. This
leads to the ordering: MFCCs, LPCs, time envelope and
chroma vector.
One should also note, although the general results in figure
1 are very similar for all classifiers, the detailed ordering of
the feature groups is somewhat different and especially the
best performing feature groups are not always the same.
Indicating again the often observed phenomenon, that for
optimal results one has to perform feature selection with
respect to a particular classification algorithm.

5 Conclusion and Outlook
We have demonstrated two different statistical approaches
to select relevant feature groups in the domain of musical
instrument classification and very successfully solved the
problem at hand. While the analysis by logistic regression
with the group lasso is computationally cheap and also al-
ready produces the relevant orderings, the statistical testing
of the discriminating power of feature sets provides more
detailed results with higher computational costs.
If resources are sparse, a reasonable result is achieved by
considering only the MFCCs, with an error rate 2− 3%
worse than the optimum. It remains unclear whether the
additional inclusion of other feature groups is worthwhile.
We aim to answer these questions in a larger follow-up
study, where more groups of musical instruments, more
tones, and polyphonic signals are considered.
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