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Abstract. In most engineering problems, experiments for evaluating
the performance of different setups are time consuming, expensive, or
even both. Therefore, sequential experimental designs have become an
indispensable technique for optimizing the objective functions of these
problems. In this context, most of the problems can be considered as
a black-box. Specifically, no function properties are known a priori to
select best suited surrogate model class. Therefore, we propose a new
ensemble-based approach which is capable of identifying the best surro-
gate model during the optimization process by using reinforcement learn-
ing techniques. The procedure is general and can be applied to arbitrary
ensembles of surrogate models. Results are provided on 24 well-known
black-box functions to show that the progressive procedure is capable
of selecting suitable models from the ensemble and that it can compete
with state-of-the-art methods for sequential optimization.

Keywords: model-based optimization, sequential designs, black-box op-
timization, surrogate models, kriging, efficient global optimization, rein-
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1 Introduction

The optimization of real-world systems based on expensive experiments or time-
consuming simulations poses an important research area. Against the back-
ground of increasing flexibility and complexity of modern product portfolios,
such kinds of problems have to be constantly solved. The use of surrogate (meta)-

models f̂ for approximating the expensive or time-consuming objective function
f : x → y represents an established approach to this task. After determining
the values of f for the points x of an initial design of experiments, the surrogate
model f̂ is computed and then used for the further analysis and optimization.
Here, we consider deterministic, i.e., noise-free minimization problems. In such
a scenario, the former approach has a conceptual drawback. The location of the
optimum can only roughly be determined based on the initial design. A high
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accuracy of the optimization on the model does not necessarily provide an im-
proved quality with respect to the original objective function. As a consequence,
the resources expended for the usually uniform coverage of the experimental re-
gion for the approximation of the global response surface may be spent more
efficiently in order to increase the accuracy of the surrogate in the regions of the
actual optimum.

A solution to this problem is provided by sequential techniques, called effi-
cient global optimization (EGO) [16], sequential parameter optimization [1] and
sequential designs [24] within the different disciplines. Sequential techniques do
not focus on an approximation of a global response surface, but on an efficient
way to obtain the global minimum of the objective function f . After evaluating
a sparse initial design in the parameter space, much smaller than the actual
experimental budget, the surrogate model is fitted and proposes a new point
which is evaluated on the original function f then. The point is added to the
design and the procedure is repeated until the desired objective value has been
obtained or the experimental budget has been spent.

For the design of a sequential technique, the choice of the surrogate model
is a crucial decision. Whereas resampling techniques [3] can be used to estimate
the global prediction quality in the classical approach, the optimization capa-
bilities of a model have to be assessed in the sequential approach. Therefore,
this capability is not necessarily static. Some models may be suited to efficiently
identify the most promising basin in the beginning, whereas others are good for
refining the approximation in the final stage of the optimization.

In this paper, we tackle the model selection problem for sequential optimiza-
tion techniques. Hence, the proposed optimization algorithm utilizes a heteroge-
neous ensemble of surrogate models. An approach to solve the progressive model
selection problem is proposed as central scientific contribution. It is designed to
identify which models are most promising at a certain stage of the optimization.
Preference values are used to stochastically select a surrogate model, which in
turn proposes a new design point in each iteration of the algorithm. Based on the
quality of this design point, the rating of the model is adjusted by means of re-
inforcement learning techniques. The procedure is general and can be performed
with arbitrary ensembles of surrogate models.

In the following, an overview of related research is provided by means of
a brief review of the literature in Sect. 2. Details of the applied methods are
presented in Sect. 3 and the actual PROGRESS algorithm is described in Sect.
4 based on these foundations. In Sect. 6, its results on the benchmark specified
in Sect. 5 are presented and discussed. The main conclusions are summarized in
Sect. 7 and an outlook for further research in this area is introduced.

2 Review

In the following review of the literature we mainly restrict the focus to sequential
optimization techniques using ensembles of surrogate models in which the selec-
tion or combination of the models for the internal optimization is dynamically
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adjusted. A more general survey of sequential optimization algorithms has been
recently provided by Shan et al. [31]. For the special class of kriging-based opti-
mization algorithms exploiting the uncertainty estimation for a trade-off between
local and global search, we refer to the taxonomy of Jones [15].

Ensemble-based sequential optimization procedures can be classified in three
basic concepts:

1. All surrogate models are individually optimized and (subsets of) the design
points are evaluated on the original objective f .

2. The predictions of all surrogate models are aggregated and their combined
value is used for selecting the next design point.

3. A single surrogate model is used in each iteration. The selection of the model
is based on dynamically adjusted scores or probabilities.

The first concept is particularly designed for applications in which speed-ups
from parallelization can be expected. For instance, Viana [35] applied four differ-
ent surrogate models in parallel to optimize engineering design problems. It was
shown that the resulting procedure is often superior to a sequential optimization
only relying on kriging. An application to surrogate-assisted evolutionary algo-
rithms was reported by Lim et al. [20]. In their approach, the best solutions of
each surrogate model are evaluated on the original function.

The second concept represents a general procedure combining predictions
using an ensemble of surrogate models. Here, individual predictions are often
aggregated via a weighted average. One major distinction of the techniques in
this concept class is whether the technique can only be applied to surrogate
models of the some basic type or whether a completely heterogeneous ensemble
set is possible. The latter case is obviously preferable because of its increased
generality. An early example for the former approach was presented by Hansen
et al. [12] and relied upon combinations of different types of neural networks. In
a similar manner, Ginsbourger et al. [9] proposed ensembles of kriging models
based on different correlation functions.

An early approach for calculating weights for aggregating individual model
predictions form a heterogeneous set was based on so-called Bayes factors [17],
which from a Bayesian viewpoint denote the conditional probability of a sur-
rogate being the true model given the current training data. More heuristic
approaches for weight calculation based on cross-validated model accuracy were
proposed and analyzed by Goel et al. [10]. The same means were also applied to
select a subset of the ensemble within a tournament selection [37]. For each fold
of a cross-validation, a representative surrogate was determined. The mean over
the predictions of the selected models was used to guide the sequential optimiza-
tion. An approach focusing on the combination and tuning of different surrogates
was presented by Gorissen et al. [11]. They aggregated the active models of the
ensemble by using the mean over the predictions. Since the key aspect of their
work was the design of an evolutionary approach for tuning and selecting the
models, the evaluation mainly focuses on the prediction quality of the resulting
approach after the tuning. A comparison with other ensemble-based sequential
techniques was not performed.
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Algorithm 1: Model-based optimization

1 Let f be the black-box function that should be optimized;
2 Generate initial design set {x1, . . . ,xn};
3 Evaluate f on design points: yi = f(xi);
4 Let D={(x1, y1), . . . , (xn, yn)};
5 while stopping criterion not met do

6 Build surrogate model f̂ based on D;

7 Get new design point x∗ by optimizing the infill criterion on f̂ ;
8 Evaluate new point y∗ = f(x∗);
9 Extend design D ← D ∪ {(x∗, y∗)};

Currently, only few related approaches exist for the third concept of ensem-
ble techniques. Its main advantage is that it constitutes a very general approach
which also allows many heterogeneous models to be integrated into the ensem-
ble since only one model has to be fitted and optimized per iteration. Thus,
the selected model can be subject to a more time-consuming tuning to specifi-
cally adapt it to the objective function. Friese et al. [8] applied and compared
different strategies to assess their suitability for sequential parameter optimiza-
tion, among them also ensemble-based methods using reinforcement learning.
However, these methods were used in a rather out-of-the-box manner, without
specifically adapting the generic reinforcement learning techniques to the prob-
lem at hand to exploit their full potential. Some of the potential problems, as
well as enhancements to overcome them, will be discussed in this paper. An-
other variant of the approach was applied in the context of operator selection in
evolutionary algorithms by Da Costa et al. [5].

3 Methods

In this section, the methodological foundations of our algorithm are introduced.
First, the general concept of a model-based optimization (MBO) algorithm is
described. Then the multi-armed bandit problem from reinforcement learning
which is later transferred to the progressive model selection problem in MBO is
presented.

3.1 Model-based Optimization

Response surface models are a common approach in cases where the budget of
evaluations available for the original function is severely limited. As this surface
can be explored with a much higher amount of evaluations, the optimum of the
so-called infill criterion can be accurately approximated using standard opti-
mization methods. This generic MBO approach is summarized in Algorithm 1.
The stages of proposing new points and updating the model are alternated in a
sequential fashion.
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In the following, the steps of the generic MBO algorithm are discussed and
some details are provided.

1. For the initial design, many experimental design types are possible, but for
nonlinear regression models usually space-filling designs like Latin hypercube
sampling (LHS) are used, see [4] for an overview. Another important choice is
the size of the initial design. Rules of thumb are usually somewhere between
4d and 10d, the latter being recommended by [16].

2. As surrogate model, kriging was proposed in the seminal EGO paper [16]
because it is especially suited for nonlinear, multimodal functions and al-
lows local refinements to be performed, but basically any surrogate model is
possible. As presented in Sect. 2, also more sophisticated approaches using
ensembles methods have been applied within MBO algorithms.

3. The infill criterion is optimized in order to find the next design point for
evaluation. It measures how promising the evaluation of a point x is accord-
ing to the surrogate model. One obvious choice is the direct use of f̂(x).
For kriging models, the expected improvement (EI) [23] is commonly used.
It factors in the local model uncertainty in order to guarantee a reasonable
trade-off between the exploration of the decision space and the exploitation
of the already obtained information. These and other infill criteria have been
proposed and assessed in several studies [15, 30, 36, 25].

4. As stopping criterion, a fixed budget of function evaluations, the attainment
of a specified y-level, or a combination of both is often used in practice.

3.2 Reinforcement Learning

The model selection problem in MBO can be considered as a “multi-armed-
bandit” reinforcement learning problem. Here, in each iteration t an action at
has to be chosen from a given set of finite choices A = {v1 . . . vm} and we could
envision those choices to be arms of a casino slot machine. In MBO, this choice
corresponds to selecting a regression model which in turn is used to propose
the next design point. Depending on the action at, we will receive a reward rt
according to an unknown probability distribution, and our aim is to maximize
summed rewards over time.

After we have obtained some information regarding the pay-offs from the dif-
ferent slot machines, we face the fundamental exploration-exploitation dilemma
in reinforcement learning: Should we try to gather more information regarding
the expected pay-off of the actions or should we greedily select the action which
currently seems most promising? The problem becomes even more difficult if we
assume nonstationary rewards, i.e., reward distributions that change over time.
In this scenario we always have to allocate a significant proportion of selections
for exploring the current situation.

Sutton [32] suggests several ways for balancing exploration and exploitation.
One is a probability matching strategy called reinforcement comparison, where
the actions are selected stochastically according to a vector qt ∈ Rm of prefer-
ence values. The main idea is that a high reward should strongly increase the
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preference value / selection probability of an action, whereas a low reward should
decrease it.

Let us assume, we are in iteration t and already have a preference vector qt.
These preferences are then transformed to selection probabilities via a softmax
function

πt,j = exp(qt,j)

(
m∑

k=1

exp(qt,k)

)−1

, j ∈ {1, . . . ,m} . (1)

Based on these probabilities, we select action at and receive its stochastic reward
rt. Assuming we are in a general nonstationary scenario, we now have to decide
whether rt is favourable or not. For this, we compare it with a reference reward
r̄t, which encodes the expected, average pay-off across all actions at iteration t.
Assuming we already have such an r̄t, the element of the preference vector qt
for the chosen action at = vj ∈ A is now updated, while the preferences for all
other actions stay the same:

qt+1,k =

{
qt,k + β[rt − r̄t], if k = j

qt,k else.
(2)

Here, the strategy parameter β encodes the strength of the adjustment, i.e., the
desired trade-off between exploitation (high β) and exploration (low β).

Finally, we update the the reference reward r̄t via the following exponential
smoothing formula

r̄t+1 = r̄t + α(rt − r̄t) . (3)

The strategy parameter α ∈ (0, 1] determines how much influence the current
reward has on the reference reward, i.e, how much we shift the reference reward
towards rt. It thus reflects the assumed degree of nonstationarity in the reward
distributions.

4 Algorithm

In this section, we address how the action selection by means of the reinforcement
comparison can be exploited for model selection in MBO. Regarding models as
selectable actions seems straightforward, but apart from that many technical
details of the basic method in Sect. 3.2 have to be clarified or adapted. The
reward will be based on the improvement in objective value obtained by the
proposed x∗. The sum of rewards over time then measures the progress made
during optimization. Thereby, the main idea is that models which generated
larger improvements in the past should likely be preferred in the future.

Instead of using an expected improvement criterion we directly optimize the
response surface of the selected model, i.e., no local uncertainty estimation is
used. Although this carries the risk of getting stuck in a local optimum for one
model, it offers two important advantages:

1. It is possible to optimize this criterion for arbitrary regression models.
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Algorithm 2: PROGRESS

1 Let f be the black-box function that should be optimized;
2 Let E = {h1, . . . , hm} be the regression models in the ensemble;
3 Generate initial design {x1, . . . ,xn};
4 Evaluate f on design ∀i ∈ {1, . . . , n} : yi = f(xi);
5 Let D={(x1, y1), . . . , (xn, yn)};
6 for j ∈ {1, . . . ,m} do
7 Build surrogate model ĥj based on D;

8 Select next promising point x∗(ĥj) by optimizing ĥj ;

9 Evaluate new point y∗(ĥj) = f(x∗(ĥj));

10 Extend design set D ← D ∪ {(x∗(ĥj), y
∗(ĥj))};

11 Calculate vector of initial rewards r0 ∈ Rm using equation (5);
12 Initialize preference vector q1 = r0;
13 Initialize reference reward r̄1 = median(r0);
14 Let t = 1;
15 while stopping rule not met do
16 Calculate model selection probabilities πt from qt using equation (1);
17 Sample model hj according to πt;

18 Build surrogate model ĥj based on D;

19 Select next promising point x∗(ĥj) by optimizing ĥj ;

20 Evaluate new point y∗(ĥj) = f(x∗(ĥj));

21 Extend design set D ← D ∪ {(x∗(ĥj), y
∗(ĥj))};

22 Calculate reward rt using equation (4);
23 Update preferences using equation (2) to obtain qt+1 ;
24 Update reference reward using equation (3) to obtain r̄t+1;
25 t ← t+1

2. By using a heterogeneous ensemble the models are likely to focus on different
basins. The exploration thus emerges from a successful adaptation of the
model selection.

The complete procedure of the PROGressive REinforcement-learning-based
Surrogate Selection (PROGRESS) is shown in Algorithm 2. It is an enhanced
instance of the generic Algorithm 1, whereby the methodical contributions are:
the initialization phase (lines 6 to 13), the stochastic model selection (lines 16
to 17) and the preference vector and reference reward updates (lines 22 to 24).
Details are provided in the following.

4.1 Rewards

Let ymin be the minimum response value of the design before the integration of
x∗(ĥj). The reward of a chosen surrogate model hj is then given by

rt(hj) = φ(ymin − f(x∗(ĥj))) , (4)
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where x∗(ĥj) is the next point proposed by model ĥj and φ is a simple linear
rescaling function which will be detailed in the next section. Thereby, it is pos-
sible that a model produces negative rewards. We intentionally use all available
information, also of iterations in which no improvements in the optimization
of f are achieved, as this happened a considerable amount of times in our ex-
periments. Surrogate models that poorly approximate interesting regions of the
the objective function are directly downgraded. Clipping rewards at zero would
discard this information.

4.2 Initialization Phase and Reward Rescaling

Until now we have not defined how preference values and reference reward are
initialized before the first iteration t = 1. When using the generic reinforcement
learning approach for MBO, we have to keep two peculiarities in mind: First,
there is a high potential for large rewards in the first sequential step, as no
optimization of the objective has been performed so far – this fact could cause
a strong overrating of the first selected model. Second, it is hard to decide on a
reasonable initial value for the reference reward – particularly, if independence
with respect to the scaling of the objective function is desired.

In the initialization phase all models of the ensemble E = {h1, . . . , hm} are
fitted to the initial design, each one proposes a point, which in turn is evaluated
by ρj = f(x∗(ĥj)), ρ = (ρ1, . . . , ρm)T . To obtain our initial reward vector r0 we
scale these values to [0, 1] by applying the linear transformation r0,j = φ(ρj),
with φ defined to be:

φ(x) =
x−min(ρ)

max(ρ)−min(ρ)
. (5)

As a consequence, the first reward is estimated for all models using a com-
parable setup, i. e., the ymin of the initial design. This tranformation φ is also
applied to all upcoming rewards.

The initial reference reward r̄1 is defined to be the median of the transformed
rewards as a robust representative. The initial vector of probabilities π1 is now
simply the softmax transformation of q1.

4.3 Sequential update

In the sequential part of PROGRESS, a surrogate model is stochastically chosen
according to the current probability vector πt, fitted to the current design and
proposes a new point x∗(ĥj) by optimization of its response surface. After its
reward has been determined based on equation 4, the original formulas of Sect. 3
can be used for updating the preferences and the reference reward. The algo-
rithm stops when the stopping criterion (in most cases the budget of function
evaluations) is met.
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5 Experimental Setup

PROGRESS and all experiments in this article have been implemented in the
statistical programming language R [26]. We analyzed the performance of our
algorithm on the 24 test functions of the BBOB noise-free test suite [13], which
is a common benchmarking set for black-box optimization. It covers a variety
of functions that differ w.r.t. problem features like separability, multi-modality,
ill-conditioning and existence of global structure. A summary of these functions
and their respective properties is provided in Table 1. Their function definitions,
box constraints and global minima were taken from the soobench R package
[21]. The dimension of the scalable test functions was set to d = 5.

Table 1. Overview of the considered test functions and the problem features covered.

separable low or moderate cond. high cond. and unimodal adequate glob. struct. weak glob. struct.

1 Sphere 6 Attractive Sector 10 Ellipsoidal Function 15 Rastrigin 20 Schwefel
2 Ellipsoidal 7 Step Ellipsoidal 11 Discus Function 16 Weierstrass 21 Gallagher’s Gaussian
3 Rastrigin 8 Rosenbrock 12 Bent Cigar 17 Schaffers F7 (101-me Peaks)
4 Bueche- (original) 13 Sharp Ridge 18 Schaffers F7 (ill) 22 Gallagher’s Gaussian

Rastrigin 9 Rosenbrock 14 Different Powers 19 Composite Griewank (21-hi Peaks)
5 Linear Slope (rotated) Rosenbrock 23 Katsuura

24 Lunacek bi-Rastrigin

The regression models used in our PROGRESS ensemble and their respective
R packages are listed in Table 2: A second order (polynomial) response surface
model (RSM) [14], a kriging model with power exponential covariance kernel
[29], multivariate adaptive regression splines (MARS) [6], a feedforward neural
network [14] with one hidden layer, a random forest [14], a gradient boosting
machine (GBM) [7] and a regression tree (CART) [14]. Table 2 also lists (con-
stant) parameter settings of the regression models which deviate from default
values and box constraints for parameters which were tuned prior to model fit-
ting in every iteration of PROGRESS based on all currently observed design
points (lines 7 and 17 in Alg. 2). To accomplish this, we used a 10-fold repeated
cross-validation (5 repetitions) to measure the median absolute prediction error
and minimized this criterion in hyperparameter space by CMAES with a low
number of iterations. Integer parameters were treated by a rounding strategy
and CMAES was always started at the point in hyperparameter space which
was discovered as optimal during the previous tuning run of the same model (or
a random point if no such point is available).

The response surfaces of the regression models were also optimized by CMAES
with 100 iterations and λ = 10d offsprings. This setting deviates from the liter-
ature recommendation for technical reasons as more parallel model evaluations
(predictions) reduce the computational overhead and lead to a better global
search quality with the same number of iterations. We performed 10 random
CMAES restarts and one additional restart at the currently best point of the
observed design points for further exploration of the search space and to reduce
the risk of getting stuck in a local optimum.
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Table 2. Surrogate models, R packages, parameters and tuning ranges.

model R package parameter value / range model R package parameter value / range

RSM rsm [18] - - RF randomForest [19] ntree {50, . . . , 500}
NNET nnet [34] size 5 mtry {1, . . . , 5}

decay [0, 0.5] MARS earth [22] degree {1, 2, 3}
GBM gbm [27] interaction.depth {4, . . . , 8} penalty {2, 3, 4}

shrinkage [0.025, 0.05] nprune {1, . . . , 10}
bag.fraction [0.5, 0.8] CART rpart [33] - -
n.minobsinnode 1 KM DiceKriging [28] nugget.estim TRUE

The learning parameters α and β of PROGRESS were manually tuned prior
to the experiments. In order to not bias the results by an overtuning to the
problems, these parameters were fixed to α = 0.1 and β = 0.25 for all of the
test instances. Thereby, our aim was to find a global parametrization leading to
robust results and a successful adaptation of the selection probabilities.

We compared PROGRESS with an established global optimizer for expensive
black-box functions, namely EGO based on a kriging with a power exponential
kernel (implementation taken from the R package DiceOptim [28]; default param-
eters except for kernel). We also ran a random LHS to provide a baseline result.
For PROGRESS we considered two variants, one with the above mentioned hy-
perparameter tuning and one without, where default settings for all regression
models were set. All algorithms were allowed a budget of 200 function evalua-
tions, from which 50 were allocated to an initial maximin LHS design. This is in
accordance with the “10 ·d rule” proposed in [16]. This initial design is shared by
all MBO algorithms in our experiments within one replication to reduce variance
in subsequent comparisons. All algorithm runs were replicated 20 times. In order
to organize and parallelize our experiments the BatchExperiments R package
[2] was used.

6 Results

In the following results we report the distance of the best visited design point to
the global optimum in objective space as measure of algorithm performance. As
we consider the optimization of the black-box function as the task to be solved,
we do not report global prediction quality indicators of the internal models.
Neither do we calculate expected run times to obtain a certain target level as
we assume an a priori fixed budget of function evaluations. The performance
distributions of the 20 runs of each algorithm on the 24 test functions of the
benchmark are shown in Fig. 1 on a logarithmic scale. As the scales and hardness
of the test functions varies considerably, no unique scale is used for the box plots
either.

The most obvious result is the superiority of the sequential designs over
the static random LHS. In all cases, except for functions 12 and 23, at least
one of the three sequential algorithms outperforms the static approach. Test
functions 12 and 23 can apparently not be approximated well enough by any of
the considered regression models to provide helpful guidance for the optimization
process. This might be due to the high condition number (function 12) or the
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Fig. 1. Performance box plots per algorithm and test function. Displayed is the dif-
ference in objective space between best design point during optimization and global
minimum on a log10 scale. PROGRESS is run in two variants, one with hyperparameter
tuning of the selected surrogate model in each iteration and one without.
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absence of global structure and an extreme number (> 105) of local optima
(function 23). The comparison of the two versions of PROGRESS with and
without hyperparameter tuning shows that both variants obtain similar results
in most instances. There are cases (e.g., function 15, 17, 19), however, where
hyperparameter tuning leads to a significantly better outcome.

The EGO algorithm and the use of kriging models represent the state-of-
the-art in sequential designs. If PROGRESS can in general compete with EGO,
it can be considered as successful, as it manages to detect suitable surrogate
models within the strictly limited budget. If we assign equal importance to all
test functions in the benchmark, none of the two algorithms clearly dominates
the other. Whereas PROGRESS outperforms EGO on the functions 1, 5, 13, 15,
16, 17, 21, and 24, the opposite holds on the functions 2, 3, 6, 8, 10, 14 and 20.
On the remaining test cases, both algorithms show no significant difference in
performance. Hence, PROGRESS is competitive with EGO and is the preferable
choice on about one third of the benchmark set. For this reason, the proposed
procedure can be considered as successful.

To obtain a more detailed understanding of the principles behind the surro-
gate selection, we analyzed the progression of the selection probabilities in three
exemplary runs. These are shown in Fig. 2. We also display the total number of
selections per model during the whole run.
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Fig. 2. Progression of selection probabilities and number of selections in PROGRESS
(with tuning). From left to right: Lunacek bi-Rastrigin (24), Gallagher’s Gaussian 21-hi
Peaks (22) and Rastrigin (3).

In the first case shown in the left plot, a dynamic shift between a model
capturing global trends (QM) and a more detailed model for local optimization
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(RF) is accomplished during the optimization. While the former efficiently iden-
tifies the basins of the Lunacek bi-Rastrigin Function3, the latter succeeds in
guiding the search through the rugged area around the optimum. This synergy
allows PROGRESS to significantly outperform EGO on this function. The cen-
ter plot shows an experiment on Gallagher’s Gaussian 21-hi Peaks function. As
“kriging” is merely a different term for “Gaussian process”, it is unsurprising this
model is the best choice to approximate the 21 local optima of this test function.
PROGRESS adapts its preference values after only a few iterations and learns to
select the kriging model with high probability and therefore scores comparable
to EGO. In the remaining plot on the right-hand side, the selection probabilities
are shown for a test case where PROGRESS showed inferior results compared
to EGO. Here, PROGRESS is not able to learn a superior model, but can only
downgrade the apparently inappropriate models NNET and CART. A possible
explanation for this problem might be the lack of balance between improvements
and deteriorations on this function. For functions on which PROGRESS is infe-
rior to EGO, such a problem can often be observed. We therefore consider this
as one of the main starting points for future improvements.

7 Conclusions and Outlook

In this paper we presented PROGRESS, a new optimization algorithm for pro-
gressive surrogate selection based on reinforcement learning techniques. We de-
monstrated that the algorithm can compete with the established efficient global
optimization (EGO) algorithm, which is the state-of-the-art for optimizing black-
box problems within a strictly limited experimental budget. While EGO was
superior in some cases of our considered benchmark cases and kriging therefore
probably the best choice for approximating the response surface of these func-
tions, PROGRESS outperformed EGO in roughly one third of cases due to the
adaptive determination of the best fitting surrogate model during the different
stages of the sequential optimization. Furthermore, the results indicate that hy-
perparameter tuning for the regression models in the ensemble can potentially
improve the outcome of PROGRESS on some problems.

In future research, our algorithmic decisions will be further validated and/or
refined. For instance, the scaling of the rewards and the calculation of the refer-
ence reward might offer potential for improvements. Moreover, more experiments
could be performed to get a better understanding of the effects and interactions of
the algorithm parameters. Alternatively, other reinforcement learning techniques
can be implemented and benchmarked with the reinforcement comparison with
respect to their suitability for an adaptive model selection. Finally, in order to
enhance the time-efficiency of PROGRESS, the necessity of a hyperparameter
tuning in every sequential loop will be further examined.

3 The weak global structure of this function is rooted in the existence of two basis of
almost the same size
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