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Summary. Solving the task of phoneme recognition in music sound files may help
for several practical applications: it enables lyrics transcription and as a consequence
could provide further relevant information for the task of an automatic song classi-
fication. Beyond it can be used for lyrics alignment e.g. in karaoke applications.
The effect of both different feature signal representations as well as the choice of the
appropriate classifier are investigated. Besides, a unified R framework for classifier
optimization is be presented.
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1 Introduction

This work is an extension of previous studies at the Fraunhofer IDMT on au-
tomatic phoneme classification in polyphonic music [7]. An accurate phoneme
recognition in music may yield a basis for several applications like automatic
lyrics extraction (and further automatic classification of songs) as well as for
the automatic alignment of previously known lyrics to music for karaoke appli-
cations. The specific goal of this work consists of the examination of different
feature sets extracted from audio data combined with an appropriate choice
and parameter tuning of classifiers. Concerning the feature sets, perceptive
phenomena have been more and more introduced in audio processing during
the last years. It is of interest up to what extent it is beneficial to model human
sound processing. A detailed neurophysiological simulation model of the hu-
man auditory periphery (serving as basis for feature extraction) is compared to
a simpler and computationally less expensive phenomenological one. Auditory
model-based features are opposed to well-known standard acoustical feature
vector representations. A unified framework for the statistical programming
language R is presented that easily allows to tune, optimize and compare the
influence of different classifiers for specific data situations and the given task.
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A description of the task in Section 2 is followed by a brief introduction to
auditory modelling in Section 3. Feature extraction from audio data (based on
the original waveform as well as on the auditory simulation model output) is
described in Section 4. The framework for classifier optimization is presented
in Section 5. Finally, the results of the study, a discussion and a summary are
given in Sections 6 and 7.

2 Description of the Task

The data under investigation consists of 45 files of popular music (30 male
and 15 female singers, 44.1 kHz, e.g. I’m a believer (Monkees), Sweet dreams
(Eurithmics), Zepher (Red Hot Chili Peppers), Billie Jean (Michael Jackson),
Killing me softly (Roberta Flack), Song #2 (Blur), ...). The music files are
split into training and test files (2/3 : 1/3). All songs are phonetically manually
labelled at the Fraunhofer IDMT according to the TIMIT phonetic transcrip-
tion. Only one single feature vector (from a 1024 samples window, i.e. 23.6
ms) is computed per phoneme to avoid highly correlated observations. In au-
tomatic speech recognition monophones are typically modelled as three state
hidden Markov models (HMMs) where the second state corresponds to its
stationary part (see e.g. [6], p. 365). We assumed to maximise the chance to
hit this ”inner” steady state of the phonemes when considering the window at
half of the phonemes total duration. 15 different vowels as well as consonants
were taken into the analysis as far as there were at least 50 observations of
each phoneme in total. The resulting classes are: /a/, /ae/, /e/, /ee/, /i/,
/j/, /l/, /m/, /n/, /o/, /oa/, /oe/, /ou/, /r/ and /w/. Finally, there were
1549 phonemes in the training and 672 phonemes in the test set. For the de-
tailed auditory model the *.wav files have to be amplitude normalized before
processing to be able to set the absolute sound pressure level (SPL) (see also
Sec. 3).
We applied sinusoidal preprocessing as it turned out to be beneficial [7]. Basi-
cally, the audio signal is considered to be a sum of voice and background. The
voiced part is further modelled as a sum of sinusoids of the estimated funda-
mental and its harmonics. The amplitudes of all other fourier frequencies are
set to 0 in the spectral domain and the result is back-transformed to the time
domain (for further details, see [7]).

3 Auditory Modelling

t

Fig. 1. Tuning curve for a 1000 Hz sine sound of different sound pressure level (left)
and output of the auditory model for a vowel /a/ (right).
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Several well-known psycho acoustical phenomena can be traced back to sound
processing in the auditory system, e.g. nonlinear frequency resolution and
amplitude saturation or masking effects. Basically, the sound wave is non-
linearly bandpass-filtered at the inner ear along the basilar membrane (BM)
and transduced into electric impulses (action potentials, APs) at the auditory
nerve fibres (ANFs) of different center frequency (CF) by inner hair cells.
A simple computational auditory model (referred to as ”Seneff-model”, [11])
phenomenologically imitates human auditory sound processing within a chain
of five successive steps, consisting of: critical band filtering (BM excitation),
halfway rectification saturating non linearity (inner hair cell current), short
term adaption circuit (synaptic neurotransmitter release), low pass filtering
(nerve fibre: synchrony reduction) and rapid automatic gain control (nerve
fibre: refractory effect). The output of the model can be interpreted as time
varying neural firing rates at 40 different ANFs (of 0.5 bark CF difference).
Besides this, also a very detailed and computationally more intensive model
of the human auditory periphery is implemented where all steps reproduce
neurophysiological measurements. It simulates exact firing times of 251 differ-
ent ANFs with CF differences of 0.1 bark [12].
Figure 1 (left) shows the average auditory nerve firing activity of the detailed
model during 200 ms along the BM (abscissa) for a 1 kHz sine of different
sound pressure level (SPL, ordinate). A level of 0 dB SPL denotes the thresh-
old of hearing [6]. Figure 1 (right, bottom) shows the response of the auditory
simulation model to some vowel /a/. The ordinate represents the unrolled in-
ner ear (BM) while the abscissa denotes the time. The output of the simulation
model is binary and of the form

Xi(t) =

{
1, AP of ANF i at time t,
0, else.

It can be seen that different positions along the BM are differentially excited
(according to the signal frequencies). The ANFs further respond periodically
with the signal period. This phenomenon is commonly referred to as phase
locking [14]. For the studies in this paper, 50 repetitive simulations of the
ANFs of different type are pursued. The signals were presented to the audi-
tory model at a (typical) level of 62.5 dB SPL [14].

4 Feature Extraction

A key idea of timbral feature extraction is the source-filter model (of speech
production). Speech signal waves are excited at the glottis (either noisy or
periodic) and get their characteristic timbre being filtered by the specific shape
of the vowel tract. Thus, the filter coefficients of (fixed) order p meaningfully
represent the sound characteristics. These linear predictive (filter) coefficients
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(LPCs) are derived by Levinson-Durbin recursion to minimize the predictive
error (see e.g. [6]). According to former studies [13] a choice of p = 16 is used
here.
Based on the principles of neural information coding mentioned above two
different non-standard feature sets are extracted from the simulated auditory
neural response (see Section 3). Place / mean rate features (MR) count the
neural activity at different ANFs independently of its temporal fine structure,
i.e.

XMR
i =

∑
t ∈ window

Xi(t)/window size.

According to [2] groups of 8 neighbouring ANFs of the detailed auditory model
in the CF range of [200, 6400] Hz are averaged to build a 24 dimensional feature
vector.
On the other hand, average localized synchrony detection features (ALSD, [1])
temporally encode neural auditory information:

XALSD
k =

1

3

k+1∑
l=k−1

As tan−1
[

1

As

(
〈|XPSTH

l (t) +XPSTH
l (t− nk)|〉 − δ

〈|XPSTH
l (t)− βnkXPSTH

l (t− nk)|〉

)]
(1)

with XPSTH
l (t) being the time-varying firing rate of ANF l (estimated by the

post stimulus time histogram of the neural activity in time bins of 1
14700 s aver-

aged over all simulations and 8 neighbour ANFs as for XMR for the detailed
model). The 〈.〉 operator denotes temporal averaging, ni is the period (in
time bins) of the CF of ANF i. Basically, the denominator checks, whether
on average the neural activity is the same as it has been one (CF-)period
before. The constant β = 0.99 avoids obtaining zeros in the denominator.
δ = 60 spikes dt s−1 corrects for spontaneous neural activity and As = 4 is a
scaling constant. According to eqn. (1) the XALSD representation consists of
a 22 dimensional feature vector.
Mel frequency cepstral coefficients (MFCCs) (see e.g. [6], pp. 280-288) have
recently become popular for speech and music analysis. They also rely on
the source-filter model of speech production: in the spectral domain the sig-
nal is the product of the excitation and the filter amplitudes (of the vowel
tract). Building the logarithm changes this into a sum. A subsequent inverse
discrete fourier transform can be interpreted as a ”spectral analysis of the
log-spectrum”: strong periods in the spectrogram represent the fundamental
and its harmonics and are captured in the higher coefficients (quefrencies) as
well as noise is. The characteristic shape of the log-spectrum is represented in
the lower coefficients. Thus, only the lowest q coefficients are used for further
timbre analysis. In this application, a typical value of q = 13 is chosen. To
imitate human perception frequency grouping according to the mel scale is
performed. The log transform can be further compared to human auditory
nonlinear amplitude saturation [14].
Perceptual linear prediction coefficients (PLPs) also take into account human
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auditory sound processing (see [6], p. 299). Before computing LPCs (see above)
the sound signal is transformed into the frequency domain where amplitudes
are compressed (typically by building cubic roots) and frequencies are grouped
according to the perceptive mel scale. After some inverse back-transform into
the time domain, LPCs are calculated. Also, an order of p = 16 is chosen
for this work [13]. For standard features like MFCCs, LPCs and PLPs an R

implementation of the Matlab rastamat toolbox [5] is used.

5 Classifier Tuning

The aim of this work is to investigate the combination of both feature ex-
traction and the choice of an adequate classifier. There exist numerous dif-
ferent classification algorithms (for an overview see e.g. [8]), many requir-
ing the choice of additional free parameters. The list below shows the clas-
sifiers that were implemented for this study (in brackets the parameters
that were varied): SVMs with polynomial kernels (K(x, y) = (1 + 〈x, y〉)d,
PSVM, d ∈ {1, 2, 3, 4}, cost of constraints violation c ∈ 2{−4,−3,...,3,4}),

SVMs with RBF kernels (K(x, y) = e−||x−y||
2/γ , RSVM, γ ∈ 2{−4,−3,...,3,4}),

cost c ∈ 2{−4,−3,...,3,4}), linear discriminant analysis (LDA, -), quadratic dis-
criminant analysis (QDA, -), mixture discriminant analysis (MDA, equal
number of subclasses ∈ {2, . . . , 5}), naive Bayes (NB, -), classification trees
(RPART, factor of required improvement for a split to be kept in the tree
model ∈ {0.005, 0.01, 0.03}), random forests (RF, -) and k nearest neighbours
(kNN, k ∈ {1, 2, 3, 4, 6, 8, 10}). All classifiers are evaluated in R using the
packages kernlab, MASS, e1071, mda, rpart, randomForest and kknn. The
free parameters are optimized on grids using an internal 5-fold cross vali-
dation (cv) on the training data. A typical problem using the programming
language R for classification purposes is the heterogenity of the different im-
plemented algorithms. A framework has been developed in order to easily
enable optimizing and benchmarking different classifiers using the R package
{mlr} [3]. Its features are: an object oriented S4 interface to R classification
methods, easy extension to new methods, it provides a unified call of different
methods, bootstrapping, cross-validation, train/test splits, parameter tuning
and benchmarking of different classification algorithms are possible (e.g. by
’double cv’ with tuning on an inner cv).

6 Results and Discussion

At first glance, the choice of the feature set appears to play the dominant role
on the accuracies. Figure 2 (left) shows the performances as a function of the
choice of the feature set. As simple LPCs show the worst results on average it
turns out to be worth including perceptive phenomena into feature extraction
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design. No strong advantages are observed using the detailed neurophysiolog-
ically parameterized auditory model instead of the simpler phenomenological
one. Concerning auditory model based feature extraction ALSD outperforms
MR feature extraction. Nevertheless standard features like MFCCs and PLPs
show the best results. Even their averaged accuracies over all classifiers are
better than the best results for optimized classifiers for any of the auditory
model based feature sets. It should be noted that these feature sets both in-
clude simplified perceptual models as well as a speech production based moti-
vation. The auditory model based features on the other hand are restricted to
modelling perception. An additional cepstral transformation of the auditory
model based features did not improve the results. There is no equivalent to
masking effects included in MFCC or PLP feature extraction. Apparently, this
effect is not of relevance for this application. Figure 3 shows the performance
of the classification algorithms compared to the average accuracy on each data
set separately. The best classifier is not the same for all feature sets empha-
sizing importance of a problem-specific classifier tuning. Some methods (NB,
RPART and kNN) are a bad choice for any of the investigated feature sets.
Some other classifiers (SVMs and LDA) are often among the best methods.
MDA shows good results for the non-auditorily extracted features whereas
random forests only perform well for the auditory model based features.
In order to obtain general hints on the choice of the classifier, a consensus
ranking is derived (see e.g. [9]). Significant differences in test accuracy of
any two classifiers for each data set are investigated using McNemar’s test [4].
The results are summarized using a Bradley-Terry model for paired com-
parisons. Table 1 shows the resulting πi that can be interpreted as ”prior
probabilities” for each specific classifier to be the significantly best choice.
The consensus ranking of the classifiers strongly suggests the use of optimized
SVMs with polynomial kernel (cf also Figure 3). Nevertheless, the best over-
all results (53.42%) are obtained using RBF-kernel SVMs and MFCC features
once again emphasizing the importance of problem specific classifier choice.
Random forests as well as LDA and MDA also appear to be a good choice
in general. Nevertheless, generalization of these results should be handled
with care. The tuned parameters of the optimal model are σ = 0.0625 of
the RBF kernels and complexity parameter c = 2. But the results strongly

Fig. 2. Maximal/average (light/dark grey) accuracy over different classifiers (left).
Feature sets clustered according to distances given by the fraction of differently
predicted (test-)objects (right)

PSVM RSVM RF MDA LDA QDA RPART kNN NB

πi 0.424 0.155 0.141 0.108 0.099 0.029 0.020 0.015 0.009

Table 1. Consensus ranking of the classifiers over all data sets.
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Fig. 3. Classifier performance compared to average accuracy per data feature set.

depend on the parameters, within the investigated parameter grid also accu-
racies below 20% are observed. Finally, Figure 2 (right) identifies MFCCs and
PLPs as well as the simpler auditory (Senneff) features to be more similar to
each other than the other features by average linkage clustering. It should be
further noted that - in contrast to modelling continuous speech the task of
classifying single frames becomes more complicated, especially due to the het-
erogeneous (nonstationary) polyphonic background noise. The use of HMMs
smoothes over successive frames for continuous modelling. The incorporation
of posterior probability estimates of optimized classifiers could improve the
use of standard Gaussian (MDA like) mixtures for continuous modelling (see
e.g. [10]). Further attention could be laid on feature combination as in [14].

7 Summary

A task with many practical applications has been investigated: automatic
recognition of phonemes in popular music. Specific interest of the study was
the investigation of the influence of different feature representations in com-
bination with the choice and tuning of the appropriate classification method.
A new R package framework has been presented to solve the latter task. In
conclusion both is beneficial: taking into account speech production as well
as perception. No improvements have been observed for high degrees of pre-
cision in auditory modelling. Nonetheless, the appropriate choice and tuning
of the classifier is of importance. The work could be further extended towards
feature combination and modelling continuous singing.
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