
Multi-Objective Parameter Configuration of
Machine Learning Algorithms using Model-Based

Optimization

Daniel Horn
TU Dortmund, Computational Statistics

44227 Dortmund, Germany

Email: daniel.horn@tu-dortmund.de

Bernd Bischl
LMU München, Computational Statistics

80539 München, Germany

Email: bernd.bischl@stat.uni-muenchen.de

Abstract—The performance of many machine learning algo-
rithms heavily depends on the setting of their respective hyper-
parameters. Many different tuning approaches exist, from simple
grid or random search approaches to evolutionary algorithms
and Bayesian optimization. Often, these algorithms are used
to optimize a single performance criterion. But in practical
applications, a single criterion may not be sufficient to adequately
characterize the behavior of the machine learning method under
consideration and the Pareto front of multiple criteria has to
be considered. We propose to use model-based multi-objective
optimization to efficiently approximate such Pareto fronts.

Furthermore, the parameter space of many machine learning
algorithms not only consists of numeric, but also categorical,
integer or even hierarchical parameters, which is a general
characteristic of many algorithm configuration tasks. Such mixed
and hierarchical parameter space structures will be created
naturally when one simultaneously performs model selection
over a whole class of different possible prediction algorithms.
Instead of tuning each algorithm individually, our approach can
be used to configure machine learning pipelines with such a
hierarchical structure, and efficiently operates on the joint space
of all considered algorithms, in a multi-objective setting.

Our optimization method is readily available as part of the
mlrMBO R package on Github. We compare its performance
against the TunePareto R package and the regular Latin
Hypercube Sampling. We use a pure numerical setting of SVM
parameter tuning and a mixed, hierarchical setting in which we
optimize over multiple model spaces at once.

I. INTRODUCTION

Many machine learning problems, can be solved by a

large number of different algorithms. Moreover, most of these

algorithms have several associated hyper-parameters with a

significant influence on their respective performances. The

problem to efficiently obtain a well-performing algorithm

configuration for a given machine learning problem is known

as tuning, hyper-parameter optimization or model selection.

In most applications it is sufficient to compare different

algorithmic configurations with respect to a single perfor-

mance measure and to choose the hyper-parameter setting

according to the optimal performance value. However, in

some applications multiple performance measures have to be

considered, e.g. runtime vs. predictive power, model sparsity

vs. predictive power or multiple measures from ROC analysis.

A few most relevant references to multi-objective machine

learning are [1]–[3]. Although the single-objective case of

algorithm configuration and hyper-parameter tuning has been

rather well-studied, there is considerably less work on multi-

objective model selection. Advanced and efficient techniques

for single-objective parameter optimization are often based on

evolutionary algorithms, iterative racing procedures [4] (see,

e.g., [5] where an approach is presented to configure modeling

pipelines for survival analysis) or model-based optimization

techniques [6]–[8], also known as Bayesian optimization. In

the latter approach, a surrogate machine learning regression

model, often a Gaussian process, is sequentially used to model

the relation between parameters and performance output. One

proposes new points by optimizing an infill criterion defined

on the model. The proposed point(s) are subsequently evalu-

ated, the model is updated, and the procedure iterates, often

until the available budget is depleted or a predefined output or

model-quality is reached. The approach is linked to the field

of surrogate assisted optimization [9].

In many practical settings only a restricted budget is spend-

able. For example, the arise of Big Data confronts many

machine learning techniques with new expensive parameter

configuration problems. A single training of a Support Vector

Machine (SVM) on a data-set containing less than a mil-

lion observations can take several hours. Tuning its hyper-

parameters on such data-sets using evolutionary or racing

techniques is not feasible. Therefore we focus on model-based

techniques, but extend them for multi-objective problems. In

2016 we used these techniques to compare the runtime and the

predictive power of different approximate SVM solvers [10].

We are currently aware of two external approaches and

packages to solve such problems in multi-objective hyper-

parameter optimization: The TunePareto package [11] and

the MSPOT approach from the SPOT package [12]. More-

over, [13] shows how to perform model-based multi-objective

optimization on noisy machine learning problems.

TunePareto provides multiple multi-objective optimization

strategies for both categorical and numeric parameter spaces.

If the parameter space only contains a (small) finite number of

possible values, TunePareto suggests to perform a full search

978-1-5090-4240-1/16/$31.00 ©2016 IEEE

of all possible combinations. In case of larger parameter spaces

and numeric parameters, different sampling strategies ranging

from uniform sampling over latin hypercube sampling towards

quasi-random low-discrepancy sequences can be applied to

draw a subset of all possible parameter configurations. Further-

more, for numerical parameter spaces TunePareto provides a

variation of the popular NSGA-II [14]. an evolutionary multi-

objective optimization algorithm.
SPOT (Sequential Parameter Optimization Toolbox) pro-

vides different model-based approaches for single-objective

optimization, including the handling of categorical parameter

spaces. Furthermore a multi-objective method named MSPOT

is included. Since [15] shows that MSPOT does not perform

better than competing MBMO algorithms, we will not focus

on MSPOT here.
Often, normal hyper-parameter tuning is run for each con-

sidered machine learning algorithm individually and the best

algorithm and its configuration are selected at the end. One dis-

advantage of this approach is that a potentially large amount of

runtime is spent on tuning inferior algorithms. This fact could

have been automatically learned from the obtained data during

the optimization much earlier. Current algorithm configuration

approaches like IRACE [4] and SMAC [16] can naturally deal

with this problem, as they allow the optimization over hierar-

chical parameter spaces. If the configuration problem contains

discrete choices for the selection of certain methods, special

categorical selection parameters are introduced that control

which method should be used. In our case that might be the

selected machine learning algorithm, but it could also refer to

the kernel of an SVM or the applied pre-processing algorithm.

The individual methods’ parameters are made dependent on

this choice and are usually called subordinate parameters.

This results in a rather complex parameter space, with often

continuous, integer, categorical and subordinate parameters.

SMAC deals with this problem by giving up the Gaussian

process as a surrogate model and instead uses a random forest.

We follow the same approach here and propose to operate on

the joint parameter space of all learners.
We propose to use sequential model-based multi-objective

optimization (MBMO) algorithms for parameter configuration

problems. Our contributions in this paper are as follows:

• We extend the MBMO procedure for mixed and hierar-

chical parameter spaces.

• We perform a benchmark study demonstrating that

MBMO algorithms outperform pure sampling and evolu-

tionary multi-objective techniques from the TunePareto
package for both a standard numerical and a mixed

hierarchical parameter space.

• We present a software framework written in R that

allows a precise definition of the parameter configuration

problem and its optimization using MBMO algorithms.

In this paper we will focus on the special case of classi-

fication in machine learning. However, all presented methods

can easily be applied to any machine learning tuning problem

where performance is empirically measurable or even general

algorithm configuration in arbitrary contexts.

In section II we give a general introduction to MBMO and

explain how to use MBMO algorithms in the context of param-

eter configuration. In section III we conduct two experiments

to compare the performance of our MBMO toolbox against

TunePareto. Section IV demonstrates the usage of our R

implementation, the paper is concluded in section V.

II. MODEL-BASED MULTI-OBJECTIVE OPTIMIZATION FOR

MIXED PARAMETER SPACES

Multi-objective (blackbox) optimization refers to an op-

timization setting with a vector-valued objective function

f = (f1, f2, . . . , fm) : X = X1 × ... × Xd → R
m, with the

usual deal that each fi should be minimized. Here, we do not

only allow Xi to be numeric, i.e., Xi = [x
(l)
i , x

(u)
i] ⊂ R, but

also to be integer (Xi = {x
(l)
i , ..., x

(u)
i } ⊂ Z) or categorical

(Xi = {v
(1)
i , ..., v

(s)
i }).

In general, multiple objectives are contradicting, and we are

interested in computing the Pareto front of all possible trade-

offs. A solution x ∈ X is said to dominate solution x′ ∈ X if x

is at least as good as x′ in all and strictly better in at least one

objective. This relation defines only a partial order, allowing

the case of incomparable solutions. The dominance relation is

sufficiently strong for a definition of optimality: a solution x is

called Pareto optimal if and only if it is not dominated by any

other solution x′. The set
{
f(x)

∣
∣ x ∈ X is Pareto optimal

}

of all non-dominated solutions is called the Pareto front.

In the last 10 years many MBMO algorithms have been

proposed. Most of these approaches are based on ideas of the

popular Efficient Global Optimization (EGO) procedure for

expensive black-box optimization [17]. The EGO algorithm

works by sequentially fitting a surrogate regression model

on all so far obtained experimental design points. In each

iteration the model is refitted and optimized with regard to

a so-called infill criterion. A new candidate point is proposed

and evaluated with the true, expensive objective and the whole

procedure iterates until a stopping criterion is reached, usually

a constraint on time or number of function evaluation.

Two popular MBMO algorithms are ParEGO [18] and

SMS-EGO [19]. An overview of alternative MBMO algo-

rithms including their taxonomy is available in [15]. Due to

the general availability of parallel computing power and the

advantages of performing experiments in batches, allowing

more than one point evaluation per sequential iteration (batch

processing) is of great interest. Especially in context of ma-

chine learning with the usage of parallel computing it is easy

to evaluate many parameter settings at the same time. As most

MBMO algorithms lack a mechanism to propose more than

one point per iteration, we also proposed multi-point strategies

for some algorithms, including ParEGO and SMS-EGO [15].

Algorithm 1 shows the pseudo code of a general MBMO

algorithm allowing the proposal of multiple points in parallel.

First, an initial design of size ninit is evaluated on the actual,

expensive objective function. Afterwards a set of l surrogate

models is fitted on the design. A set of t new candidates is

generated by optimizing a set of infill criteria based on the

Algorithm 1 Model-based multi-objective optimization.

Require: expensive function f : X → R
m, batch size t, size

of initial design ninit, evaluation budget

1: generate initial design D := {x1, ...xninit
} ⊂ X

2: compute Y := f(D) = [f(x1), ..., f(xninit
)]T

3: while evaluation budget not exceeded do

4: fit surrogate models f̂ = {f̂1, ..., f̂l} on D and Y

5: get {x∗
1, ...,x

∗
t } by optimizing some infill criteria on f̂

6: evaluate y∗
i := f(x∗

i), i = 1, ..., t
7: D := D ∪ {x∗

1, ...,x
∗
t }

8: Y := [Y T ,y∗
1
T , ...,y∗

t
T]T

9: return Pareto front and set of Y and D

surrogate models. Finally the new candidates are evaluated on

the real objective function and added to the design.

Now we will further explain the cursive components in

Algorithm 1. They can be instantiated to form variants of

MBMO algorithms, as we will demonstrate for ParEGO and

SMS-EGO. Moreover, most MBMO algorithms were origi-

nally proposed only for numeric parameter spaces. With our

here proposed adjustments we enable every MBMO algorithm

to work on mixed, hierarchical parameter spaces.

a) Initial Design: In principle, all available design-of-

experiment techniques can be used. Very often, space filling

techniques like Latin Hypercube Sampling (LHS) are applied,

as we also do for both ParEGO and SMS-EGO here.

Since LHS itself is only defined for numeric parameter

spaces, it has to be extended towards mixed, hierarchical

parameter spaces. We propose to use a thinning approach,

based on distances, to generate an initial design of size ninit:

A purely random design of size nexh � ninit is sampled and

reduced by removing a random point with minimal distance

to another point until only ninit points remain. We use the

Gower distance function [20] for mixed parameter spaces.

b) Surrogate Models: Although any regression model

could be used, almost all MBMO algorithms use Kriging,

including ParEGO and SMS-EGO. Different from EGO,

most MBMO algorithms have to fit more than one model per

iteration since multiple objective have to be taken into account.

For example, SMS-EGO fits an individual Kriging model for

each objective function (here: t = m).

ParEGO follows a different approach. The algorithm fits

a single Kriging model to the scalarized objective functions.

This is done by applying the Augmented Tschebbyscheff norm

with a uniformly sampled weight vector w. In order to propose

a batch of size t, we suggested to sample t different weight

vectors per iteration [15] in a stratified manner. New design

points are selected by optimizing the infill criteria on the

different scalarizations separately (here: t = l).

Kriging itself is defined for numeric parameter spaces only.

Although there are several approaches how to generalize

Kriging towards mixed parameter spaces (e.g., see [21]), they

are not frequently used. For the single objective case the

SMAC toolbox uses a random forest for mixed parameter

spaces [16]. A random forest is an intuitive choice since it

has the ability to learn complex non-linear relationships. It also

offers several possible estimators for the uncertainty of new

observations, which is needed for the calculation of most infill

criteria. One simple approach is to use the standard deviation

of the mean proposals of all trees in the forest. We adopt this

idea for the multi-objective case.

Due to the possibly hierarchical structure of the parameter

space, some parameters may be inactive for a specific design

point. We simply treat these inactive values as missing and

use standard missing value imputation techniques to handle

them with the random forest. Since each missing value refers

to an area in the parameter space, where the behavior of the

target function is rather different (since a different method

is used), we replace missing values with values that indicate

this different behavior. Missing values in numeric and integer

parameters Xi are replaced by max+2(max−min), where

max and min are the maximal and minimal values of all

already evaluated configurations of Xi. This encodes the

missing values outside of the range of normal parameters and

therefore preserves the information that the values were indeed

missing. Missing values in categorical parameters are simply

coded as a new level missing.

c) Infill Criterion: Although there are many different

single objective infill criteria, only 2 are frequently used:

the expected improvement (EI) and the (lower) confidence

bound (CB) [6]. Since ParEGO performs a single objective

(scalarized) optimization, it can use all of these criteria.

Although [18] proposed to use the EI, we showed that it is

more promising to use the CB [15]. In addition to those single

objective criteria there are several specialized multi-objective

infill criteria like the expected hyper-volume improvement

[22] and the direct indicator based (DIB) approaches. SMS-

EGO is one of the DIB approaches: New design points are

chosen by maximizing the contribution of their CB-value to

the current Pareto front approximation. The contribution is

measured using the non-dominated hypervolume.

There is no need to adapt the infill criteria to the case

of mixed, hierarchical parameter spaces, since all existing

criteria depend only on the set of surrogate models and the

corresponding uncertainty estimators.

d) Infill Optimization: In each iteration of each MBMO

algorithm the respective infill criterion has to be optimized.

Since it is cheap to evaluate the infill criterion (it is only based

on model prediction), a large budget of evaluations can be

invested. Therefore the choice of the infill optimizer does not

seem critical. Both ParEGO and SMS-EGO use a variant

of the CMA-ES [23] for their infill optimization. Since the

CMA-ES is not able to handle discrete parameters it has do

be replaced by a more flexible optimizer.

In our R-toolbox mlrMBO we use a different approach. In

order to reduce call stack overhead, it is much more efficient

to be able to query model prediction for many different points

in parallel in each optimizer iteration. Therefore we use an

optimization strategy we call focus search, that calculates

predictions for large chunks of points. Due to its simple and

flexible structure, focus search is also able to handle mixed,

Algorithm 2 Infill optimization: focus search.

Require: cheap black box function g : X → R, number of

restarts n.restarts, number of focus iterations n.iters,

number of random search points n.points

1: for u ∈ {1, ..., n.restarts} do

2: Set X̃ := X
3: for v ∈ {1, ..., n.iters} do

4: generate random design D ⊂ X̃ of size n.points

5: compute x∗
u,v = (x∗

1, ..., x
∗
d) := argminx∈D g(x)

6: for X̃i in X̃ do

7: if X̃i numeric: X̃i = [x̃
(l)
i , x̃

(u)
i] then

8: x̃
(r)
i := 1

4 (x̃
(u)
i − x̃

(l)
i)

9: x̃
(l)
i := max{x̃

(l)
i , x∗

i − x̃
(l)
i }

10: x̃
(u)
i := min{x̃

(u)
i , x∗

i + x̃
(u)
i }

11: if X̃i categorical: X̃i = {ṽ
(1)
i , ..., ṽ

(s)
i }, s > 2 then

12: x̄i := sample uniformly from X̃i\x
∗
i

13: X̃i := X̃i\x̄i

14: Return x∗ := argmin
u∈{1,...,n.restart},v∈{1,...,n.iters}

g(x∗
u,v)

hierarchical parameter spaces. The corresponding pseudo code

is given in Algorithm 2. The main idea is an iterated and

sequentially refined random search using n.points random

points. After each of n.iters random search iteration, the

constraints of the feasibility region are focused around the

current best point. Due to the stochastic of this procedure and

to handle multi-modality of the infill criterion, the procedure

is restarted n.restarts times.

III. EXPERIMENTS

As an example of multi-objective parameter configuration,

we consider the bi-objective minimization of the false-negative

and the false-positive rate (FNR and FPR) in binary classifica-

tion. We assume that all considered classifiers produce binary

labels in prediction, but can be controlled either via weighting

classes or individual observations, to reweigh preferences for

one class or the other. We are interested in computing the

complete Pareto front in order to obtain the best parameter

settings for all potential trades-offs for the two objectives.

As a general strategy for balancing FNR and FPR, class

weighting can be used. Without loss of generality it is suf-

ficient to adapt the weight ω for the positive class. This is

done by assigning each observation of the positive class the

weight ω during model fit, i.e., during the minimization of the

loss function, while we assign a weight of 1 to each element

of the negative class. The larger the value of ω, the more

importance is assigned to observations of the positive class,

which in the limit results in an eventual FPR of 1. On the

other hand, reducing ω to 0 results eventually in FPR = 0.

In the first experiment we tune the objectives FNR and

FPR of a support vector machine (SVM) with an RBF kernel.

We compare the performance of four multi-objective tuning

algorithms on this problem: From the TunePareto R package

we chose the latin and the evolution strategy. The simple

TABLE I
DESCRIPTION OF THE USED DATA SETS. #OBS IS THE NUMBER OF

OBSERVATIONS AND #FEATS IS THE NUMBER OF FEATURES IN THE

RESPECTIVE DATA SETS. THE CLASS RATIO GIVES THE PROPORTIONAL

SIZE OF THE SMALLER CLASS IN COMPARISON TO #OBS, I.E., A CLASS

RATIO OF 0.5 INDICATES THAT BOTH CLASSES ARE OF EQUAL SIZE. THE

DID IS THE UNIQUE DATA SET IDENTIFIER ON THE OPENML PLATFORM.

name #obs #feats class ratio did
ada agnostic 4 562 48 0.25 1043
eeg-eye-state 14 980 14 0.45 1471

kdd JapaneseVowels 9 961 14 0.16 976
mozilla4 15 545 5 0.33 1046
pendigits 10 992 16 0.10 1019
phoneme 5 404 5 0.29 1489
spambase 4 601 57 0.39 44

wind 6 574 14 0.47 847
waveform 5 000 40 0.34 979

latin strategy performs LHS sampling. The more advanced

evolution strategy is based on the well-known NSGA-II
approach, but adapts both the recombination and the mutation

strategy (see [11] for more details). From our toolbox mlrMBO
we chose SMS-EGO and ParEGO fused with the CB infill

criterion. SMS-EGO is run in its sequential variant while

ParEGO is forced to propose 4 points in each iteration. The

advantage here is that all 4 points can be evaluated in parallel

and the algorithm can gain a theoretical speed up of factor 4.

In the second experiment we optimize a joint parameter

space of three base learners: an SVM, a random forest and a

regularized logistic regression. Unfortunately TunePareto is

not able to handle such complex parameter spaces, therefore

we are only able to use ParEGO and SMS-EGO. As a

baseline we also run a simple latin hypercube sampling.

We run the experiments on several data sets (see table I), all

of them are available on the open machine learning platform

OpenML [24]. To obtain a bearable overall execution time for

our experiments, we decided to use only mediocre sized data-

sets. However, we think that the results can be transferred to

larger data-sets. FNR and FPR are measured by 10-fold cross

validations. For an unbiased estimation of the Pareto front we

use a nested resampling strategy: The tuning is performed on

only 50% of the data points, the remaining 50% are used

for a-posteriori test evaluation. In this paper we only report

measures based on the test evaluations.

We perform 10 replications per algorithm and data set.

Each tuning algorithm is presented the same cross-validation

splits for each statistical replication. To analyze our results we

normalize the resulting decision vectors Ỹ = [yT
1 , ...,y

T
n]

T ,

where Ỹ is the union over the results of all algorithms for

each data set and replication. We apply the transformation
yi−minyi

maxyi−minyi
, so that the corresponding Pareto front of each

objective and replication has the range [0, 1]. We then compute

the dominated hypervolume (with reference point (1.1, 1.1))
and the 50% empirical attainment function (eaf) [25] for all

algorithms and data sets. To compare the performances of

the various algorithms we folow the procedure proposed by

Demsar [26]. We perform Friedman tests to detect significant

differences in the performances followed by post-hoc Nemenyi

TABLE II
RESULTS OF THE PAIRED PAIRWISE T-TESTS (α = 0.05) FOR THE SVM
EXPERIMENT. + INDICATES THE FIRST, - THE SECOND ALGORITHM WAS

SIGNIFICANT BETTER, OTHERWISE 0 IS DISPLAYED. THE FRIEDMAN TEST

FOR EQUAL MEDIAN HYPERVOLUME VALUES REJECTED ITS NULL

HYPOTHESES WITH AN P-VALUE OF 0.001, THE LAST LINE OF THE TABLE

SHOWS THE P-VALUES OF THE POST-HOC NEMENYI TESTS.

S
M

S
-E

G
O

v
s

P
ar

E
G

O

S
M

S
-E

G
O

v
s

la
ti

n

S
M

S
-E

G
O

v
s

ev
o
lu

ti
o
n

P
ar

E
G

O
v
s

la
ti

n

P
ar

E
G

O
v
s

ev
o
lu

ti
o
n

la
ti

n
v
s

ev
o
lu

ti
o
n

ads agnostic + + + + + +
eeg-eye-state 0 + + 0 0 -

kdd JapaneseV... 0 + + 0 0 -
mozilla4 0 + + + + +
pendigits 0 0 0 + + 0
phoneme 0 + + + + 0
spambase 0 + + + + 0
waveform 0 + + + 0 0

wind - + + + + +
p-Value 0.885 0.003 0.031 0.031 0.185 0.885

tests. For further insight into the data we do also perform

pairwise Wilcoxon tests with paired samples. All tests are

performed with significance level α = 0.05.

The experiments are conducted using our own software

packages written in R [27], including (but not only) mlrMBO
[28], mlr [29] and BatchExperiments [30] and were executed

on the LiDOng cluster of TU Dortmund university.

A. Tuning a support vector machine

We tune an SVM with RBF kernel, i.e., we optimize the

cost parameter C, the inverse kernel width γ and the class

weighting parameter ω (d = 3). The region-of-interest for C

and γ is defined as 2[−15,15], for ω we use the interval 2[−7,7].

All parameters are optimized on a logarithmic scale.

We consider a total budget of 160 (≈ 50d) function

evaluations. For both ParEGO and SMS-EGO we use the

same random LHS as initial design with size 30 (= 10d).

As surrogate we use a Kriging model with matern- 3
2 kernel

and a small nugget effect (10−4) for numerical stability. We

force ParEGO to propose 4 points in each iteration, SMS-

EGO is run in its sequential variant. For our focus search

we set n.iters = n.restarts = 3 and n.points = 1000. For

TunePareto’s evolution-strategy we set μ = λ = 20.

The results are shown in the left columns of both Fig.

2 and Fig. 3. On all test functions both SMS-EGO and

ParEGO are at least as good as latin and evolution, most

times both MBMO algorithms outperform both baselines. The

boxplots show higher hypervolume values on nearly all data

sets, the median eaf-plots do confirm the hypervolume values.

It appears to be difficult to give a ranking between the two

MBMO algorithms, only on the wind data set we observe that

ParEGO performs better than SMS-EGO. The differences

between latin and evolution are much clearer on some data

sets, but since they take turns in dominating each other it is

also impossible to state a winner here.

The Friedman test gives a p-value of 0.001, therefore we

have a strong indicator that the differences in the figures are

significant. In table II the results of the post-hoc Nemenyi tests

and the paired Wilcoxon tests are shown. The tests mainly

confirm the impression we got from the figures, but here

the results are even more distinct. Apparently some variance

caused by the different resampling instances was eliminated

in the pairing process. Both ParEGO and SMS-EGO are not

significantly worse than the baselines on all 9 test functions,

and they are significantly better on 6 to 8 test functions.

However, the Nemenyi test does not show a significant differ-

ence between ParEGO and evolution. Comparing SMS-EGO
and ParEGO the Nemenyi test does not show a significant

difference, only on 2 data sets differences were detected by

the Wilcoxon test. Comparing latin and evolution we see 3

wins for latin, 2 wins for evolution and 4 draws. In this case,

the Nemenyi test does also not find a significant difference.

Overall we can state that both MBMO algorithms outper-

form the baselines from the TunePareto package. Although

ParEGO was forced to propose 4 points in each iteration,

which should be a disadvantage in the optimization (new in-

formation is not included every single, but every 4th iteration),

it was able to reach the same performance as SMS-EGO.

B. Tuning over multiple models with hierarchical structure

Now we consider a joint model space containing three base

learners: an SVM, a random forest and an L2-regularized lo-

gistic regression. The hierarchical structure of the correspond-

ing parameter set (containing numeric, integer and discrete

parameters) is displayed in Fig. 1. Note that most parameters

are dependent on the discrete parameter learner.

We try to use almost the same settings as in the first

experiment. However, to handle the mixed parameter spaces,

some changes have to be done: to accurately sample the

larger parameter space we increased the size of the initial

design to 60 and the overall budget to 300 points. This

corresponds to 10d̃ and 50d̃, where d̃ = 6 is the number of

numeric and integer parameters in X . We use our thinning

X

ω learner

2[−7,7] random forest L2 LogReg svm

mtry nodesize C C

kernel

linearradial

γ

{�0.1p�, ..., �0.9p�} {1, ..., �0.5n�} {1, ..., 21} 2[−15,15] 2[−15,15]

Fig. 1. Joint parameter space of the second experiment. Circles denote vari-
ables, rectangles denote values of numerical and discrete parameters, arrows
denote the hierarchic structure. Here n denotes the number of observations,
p the number of features in the respective data set.

0.6

0.7

0.8

0.9

1.0

1.14

1.16

1.18

1.20

1.190

1.195

1.200

1.205

1.13

1.14

1.190

1.195

1.200

1.205

1.210

1.02

1.05

1.08

1.11

1.16

1.17

1.18

1.05

1.08

1.11

1.14

1.17

1.09

1.11

1.13

1.15

S
M

S
−E

G
O

Pa
rE

G
O

la
tin

 e
vo

lu
tio

n

M

0.90

0.95

1.00

1.05

1.10

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

1.25

0.6

0.8

1.0

1.2

0.25

0.50

0.75

1.00

0.5

0.7

0.9

1.04

1.08

1.12

0.85
0.90
0.95
1.00
1.05
1.10

0.4

0.6

0.8

1.0

ada_agnostic
eeg−eye−state

kdd_JapaneseVow
els

m
ozilla4

pendigits
phonem

e
spam

base
w

aveform
w

ind

S
M

S
−E

G
O

Pa
rE

G
O

la
tin

eraral

Fig. 2. Hypervolume values for both experiments and all data sets.

Algorithm SMS−EGO ParEGO latin evolution

0.0

0.2

0.4

0.6

0.04

0.06

0.08

0.10

0.01

0.02

0.03

0.04

0.05

0.10

0.15

0.20

0.25

0.000
0.005
0.010
0.015
0.020

0.1

0.2

0.3

0.05

0.10

0.15

0.20

0.25

0.1

0.2

0.3

0.1

0.2

0.3

0.2 0.4 0.6

0.04 0.06 0.08

0.02 0.03 0.04

0.10 0.15 0.20 0.25

0.005 0.010 0.015 0.020

0.1 0.2 0.3

0.05 0.10 0.15 0.20 0.25

0.1 0.2 0.3

0.1 0.2 0.3

M

0.1
0.2
0.3
0.4
0.5

0.00

0.25

0.50

0.75

1.00

0.1

0.2

0.3

0.4

0.00

0.25

0.50

0.75

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.1
0.2
0.3
0.4
0.5

0.1
0.2
0.3
0.4
0.5

0.0

0.2

0.4

0.6

0.1 0.2 0.3

0.00 0.25 0.50

0.1 0.2 0.3 0.4

0.00 0.25 0.50 0

0.0 0.1 0.2 0.3

0.2 0.4 0.6

0.0 0.1 0.2 0.3

0.1 0.2 0.3 0.

0.2 0.4 0.6

eraral

Fig. 3. 50% empirical attainment functions of the two objectives FNR and
FPR for both experiments, the axis limits were focused on the interesting
parts of the Pareto fronts. The order of the data sets is the same as in Fig. 2.

TABLE III
RESULTS OF THE PAIRED PAIRWISE WILCOXON TESTS (α = 0.05) FOR

THE JOINED SPACE EXPERIMENT. + INDICATES THE FIRST, - THE SECOND

ALGORITHM WAS SIGNIFICANT BETTER, OTHERWISE 0 IS DISPLAYED. THE

FRIEDMAN TEST FOR EQUAL MEDIAN HYPERVOLUME VALUES REJECTED

ITS NULL HYPOTHESES WITH AN P-VALUE OF 0.0006, THE LAST LINE OF

THE TABLE SHOWS THE P-VALUES OF THE POST-HOC NEMENYI TESTS.

S
M

S
-E

G
O

v
s

P
ar

E
G

O

S
M

S
-E

G
O

v
s

la
ti

n

P
ar

E
G

O
v
s

la
ti

n

ada agnostic 0 + 0
eeg-eye-state + + +

kdd JapaneseVowels + + +
mozilla4 - + +
pendigits 0 + +
phoneme 0 + +
spambase 0 + +
waveform + + +

wind + + +
p-Value 0.466 0 0.026

approach as initial design with an oversampled design of

size nexh = 10ninit. As surrogate model we use a random

forest containing 500 trees, its uncertainty is estimated by the

standard deviation of the single trees mean responses.

The results are displayed in the right columns of Fig. 2

and Fig. 3. As in the SVM experiment we can see on all

data sets that both MBMO algorithms are at least as good as

the baseline latin hypercube sampling, and they outperform

it on most data sets. Since the joint parameter space in this

experiment is a super set of the parameter space in the SVM

experiment, the optimal hypervolume value in this experiment

is at least as high as in the SVM experiment. Unfortunately on

most data sets much lower hyper-volume values are reached.

This can be explained by the much larger search space and the

severely restricted budget, but might indicate room for further

for improvements. In contrast to the SVM experiment, here,

SMS-EGO seems to be a bit better than ParEGO.

The observations from the figures are confirmed by the

results of the tests in table III. The Friedman test finds

significant differences with a p-value of 0.0006, the Nemenyi

tests show that both ParEGO and SMS-EGO are significantly

different from latin. SMS-EGO and ParEGO are significantly

better than latin on 8 to 9 data sets.Comparing SMS-EGO

and ParEGO we see that SMS-EGO is significantly better

than ParEGO on 5 data sets, ParEGO does only win on

the mozilla4 data set, the remaining 3 data sets are draws.

Although this difference is not significant according to the

Nemenyi test, SMS-EGO seems preferable in this experiment.

IV. IMPLEMENTATION IN MLRMBO

In order to ensure open and convenient access to our

proposed methods, as well as reproducibility of results for

studies as in this paper, we have implemented them into the

mlrMBO R package [28] for model-based optimization. In

this section we will demonstrate its usage for multi-objective

parameter configuration of machine learning algorithms where

we combine mlrMBO with our mlr toolbox for machine

learning in R [29]. Therefore, we pick the same situation as in

experiment 1, the simultaneous optimization of the FNR and

FPR of an SVM with an RBF kernel, but keep some more

advanced settings at their defaults for simplicity.

In the first lines of the example code the machine learning

problem is defined. Lines 3 and 4 define the machine learning

task, we use the predefined classification problem on the sonar

data set. In lines 5 to 7 the SVM is created, we allow reweigh-

ing of the classes and optimization of the weighting parameter.

The next lines describe how to measure performance for our

learning problem and the bi-criteria objective function. Lines 8

to 9 define the data splits, here a 10-fold cross validation. Lines

10–16 specify the objective: the cross-validated FNR and FPR

scores of the SVM, for given hyper-parameters x. In lines 17-

24 the parameter space is defined. The lines 25-28 bundle all

information regarding the optimization problem in a single R

object. The last part of the example code defines the optimizer.

Here we define a default multi-objective optimization with

ParEGO using the confidence bound (CB) infill criterion.

In lines 34–36 the surrogate learner (a Kriging model) is

constructed. Lines 37–39 sample the initial design using a

random LHS, lines 40–42 perform the actual optimization.

1 l i b r a r y (mlrMBO)
2 c o n f i g u r e M l r (show . l e a r n e r . o u t p u t = FALSE)
3 # We use t h e p r e d e f i n e d mlr t a s k sonar

4 t a s k = s o n a r . t a s k
5 # The l e a r n e r whose per formance we o p t i m i z e :

6 c l . l r n = makeLearner (” c l a s s i f . svm”)
7 c l . l r n = makeWeightedClassesWrapper (c l . l r n)
8 # The v a l i d a t i o n p r o c e d u r e

9 r i n = m akeResam pleIns tance (cv10 , t a s k)
10 # F u n c t i o n t o resample t h e per formance

11 fn = f u n c t i o n (x) {
12 l r n = s e t H y p e r P a r s (c l . l r n , p a r . v a l s = x)
13 r e s a m p l e (l e a r n e r = l r n , show . i n f o = FALSE ,
14 t a s k = t a s k , r e s a m p l i n g = r i n ,
15 measures = l i s t (fn r , f p r)) $ aggr
16 }
17 # D e s c r i p t i o n o f t h e parameter space

18 p a r . s e t = makeParamSet (
19 makeNumericParam (” c o s t ” , lower = −15,
20 upper = 15 , t r a f o = f u n c t i o n (x) 2ˆ x) ,
21 makeNumericParam (”gamma” , lower = −15,
22 upper = 15 , t r a f o = f u n c t i o n (x) 2ˆ x) ,
23 makeNumericParam (”wcw . weigh t ” , lower = −7,
24 upper = 7 , t r a f o = f u n c t i o n (x) 2ˆ x))
25 # D e s c r i p t i o n o f t a r g e t f u n c t i o n

26 o b j . fun = m a k e M u l t i O b j e c t i v e F u n c t i o n (
27 fn = fn , has . s i m p l e . s i g n a t u r e = FALSE ,
28 p a r . s e t = p a r . s e t , n . o b j e c t i v e s = 2L)
29 # B u i l d t h e MBO c o n t r o l f o r m u l t i c r i t op t im .

30 c t r l = makeMBOControl (n . o b j e c t i v e s = 2L)
31 c t r l = s e t M B O C o n t r o l I n f i l l (c t r l , c r i t = ” cb ”)
32 c t r l = s e t M B O C o n t r o l M u l t i C r i t (c t r l ,
33 method = ’ parego ’)
34 # C o n s t r u c t t h e s u r r o g a t e l e a r n e r

35 mbo . l r n = makeLearner (” r e g r . km” ,
36 p r e d i c t . t y p e = ” se ”)
37 # Sample t h e i n i t i a l d e s i g n

38 d e s i g n = g e n e r a t e D e s i g n (n = 10L ,
39 p a r . s e t = p a r . s e t , fun = randomLHS)
40 # S t a r t MBO

41 mbo (fun = o b j . fun , d e s i g n = des ign ,
42 l e a r n e r = mbo . l r n , c o n t r o l = c t r l)

V. CONCLUSION

Automatic parameter configuration is a challenging prob-

lem, this holds even more for multi-objective parameter con-

figuration. The corresponding optimization problems are often

very expensive, multi-modal and have mixed, hierarchical

parameter spaces. Very few optimization algorithms are able

to tackle all of these complications at once.

In this paper we proposed to use model-based multi-

objective optimization algorithms for parameter configuration

tasks. MBMO algorithms so far have been able to handle

most of the above complications very well, except for the

mixed, hierarchical parameter spaces. Therefore we presented

an extension based on random forests for MBMO algorithms

toward those parameter spaces. We presented two parameter

configuration experiments. In the first one we optimized the

false negative rate and false positive rate over a simple 3-

dimensional parameter space of an SVM. In the second

one we optimized the same objectives over a more complex

joint model space of an SVM, a random forest and an L2

penalized logistic regression. In both experiments the MBMO

algorithms ParEGO and SMS-EGO were able to outperform

the baselines.

Although the results of the SVM experiment are very

promising, the results for the joint model space have room

to get even better. In our opinion, especially the choice of

the random forest as the surrogate model and its uncertainty

estimator need further investigation. Moreover, we ignored

that every parameter configuration problem is actually a noisy

optimizing problem by fixing the crossvalidation splits. In our

future work we plan on including the noise-aspect into the

actual MBMO optimization.

REFERENCES

[1] Y. Jin, Multi-Objective Machine Learning, ser. Studies in Computational
Intelligence. Springer, 2006.

[2] R. M. Everson and J. E. Fieldsend, “Multi-class {ROC} analysis from
a multi-objective optimisation perspective,” Pattern Recognition Letters,
vol. 27, no. 8, pp. 918 – 927, 2006.

[3] L. Graning, Y. Jin, and B. Sendhoff, “Generalization improvement
in multi-objective learning,” in The 2006 IEEE International Joint

Conference on Neural Network Proceedings. IEEE, 2006, pp. 4839–
4846.

[4] M. Lopez-Ibanez, J. Dubois-Lacoste, T. Sützle, and M. Birattari,
“The irace package, iterated race for automatic algorithm configu-
ration,” IRIDIA, Universit Libre de Bruxelles, Belgium, Tech. Rep.
TR/IRIDIA/2011-004, 2011.

[5] M. Lang, H. Kotthaus, P. Marwedel, C. Weihs, J. Rahnenfhrer, and
B. Bischl, “Automatic model selection for high-dimensional survival
analysis,” Journal of Statistical Computation and Simulation, vol. 85,
no. 1, pp. 62–76, 2015.

[6] D. R. Jones, “A taxonomy of global optimization methods based on
response surfaces,” Journal of Global Optimization, vol. 21, no. 4, pp.
345–383, 2001.

[7] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-weka:
Combined selection and hyperparameter optimization of classification
algorithms,” in Proceedings of the 19th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, ser. KDD ’13.
New York, NY, USA: ACM, 2013, pp. 847–855.

[8] P. Koch, B. Bischl, O. Flasch, T. Bartz-Beielstein, C. Weihs, and W. Ko-
nen, “Tuning and evolution of support vector kernels,” Evolutionary

Intelligence, vol. 5, no. 3, pp. 153–170, 2012.

[9] Y. Jin, “Surrogate-assisted evolutionary computation: Recent advances
and future challenges,” Swarm and Evolutionary Computation, vol. 1,
no. 2, pp. 61 – 70, 2011.

[10] D. Horn, A. Demircioğlu, B. Bischl, T. Glasmachers, and C. Weihs, “A
comparative study on large scale kernelized support vector machines,”
Advances in Data Analysis and Classification, pp. 1–17, 2016.

[11] C. Müssel, L. Lausser, M. Maucher, and H. A. Kestler, “Multi-objective
parameter selection for classifiers,” Journal of Statistical Software,
vol. 46, no. i05, 2012.

[12] M. Zaefferer, T. Bartz-Beielstein, B. Naujoks, T. Wagner, and M. Em-
merich, “A case study on multi-criteria optimization of an event detection
software under limited budgets,” in Proc. 7th Int’l. Conf. Evolutionary

Multi-Criterion Optimization (EMO), R. Purshouse et al., Eds. Berlin:
Springer, 2013, pp. 756–770.

[13] P. Koch, T. Wagner, M. T. Emmerich, T. Bäck, and W. Konen, “Effi-
cient multi-criteria optimization on noisy machine learning problems,”
Applied Soft Computing, vol. 29, pp. 357 – 370, 2015.

[14] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on

Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.
[15] D. Horn, T. Wagner, D. Biermann, C. Weihs, and B. Bischl, “Model-

Based Multi-objective Optimization: Taxonomy, Multi-Point Proposal,
Toolbox and Benchmark,” in Evolutionary Multi-Criterion Optimization,
ser. Lecture Notes in Computer Science. Springer International
Publishing, 2015, vol. 9018, pp. 64–78.

[16] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential Model-Based
Optimization for General Algorithm Configuration,” in Proceedings of

LION-5, 2011, pp. 507–523.
[17] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimiza-

tion of expensive black-box functions,” Journal of Global Optimization,
vol. 13, no. 4, pp. 455–492, 1998.

[18] J. Knowles, “ParEGO: A hybrid algorithm with on-line landscape ap-
proximation for expensive multiobjective optimization problems,” IEEE

Transactions on Evolutionary Computation, vol. 10, no. 1, pp. 50–66,
2006.

[19] W. Ponweiser, T. Wagner, D. Biermann, and M. Vincze, “Multiobjective
optimization on a limited amount of evaluations using model-assisted
S-metric selection,” in Proc. 10th Int’l Conf. Parallel Problem Solving

from Nature (PPSN), 2008, pp. 784–794.
[20] J. C. Gower, “A general coefficient of similarity and some of its

properties,” Biometrics, vol. 27, no. 4, pp. 857–871, 1971.
[21] Q. Zhou, P. Z. G. Qian, and S. Zhou, “A simple approach to emulation

for computer models with qualitative and quantitative factors,” Techno-

metrics, vol. 53, no. 3, pp. 266–273, Aug. 2011.
[22] M. T. M. Emmerich, A. Deutz, and J. W. Klinkenberg, “Hypervolume-

based expected improvement: Monotonicity properties and exact com-
putation,” in Proc. IEEE Congress on Evolutionary Computation (CEC),
2011, pp. 2147–2154.

[23] N. Hansen, The CMA Evolution Strategy: A Comparing Review.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 75–102.
[Online]. Available: http://dx.doi.org/10.1007/3-540-32494-1 4

[24] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo, “OpenML:
Networked science in machine learning,” SIGKDD Explor. Newsl.,
vol. 15, no. 2, pp. 49–60, Jun. 2014.

[25] V. G. da Fonseca and C. M. Fonseca, “The attainment-function approach
to stochastic multiobjective optimizer assessment and comparison,” in
Experimental Methods for the Analysis of Optimization Algorithms,
T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, Eds.
Berlin Heidelberg: Springer, 2010, pp. 103–130.

[26] J. Dems̆ar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[27] R Core Team, R: A Language and Environment for Statistical

Computing, R Foundation for Statistical Computing, Vienna, Austria,
2016. [Online]. Available: https://www.R-project.org/

[28] B. Bischl, J. Richter, J. Bossek, D. Horn, and M. Lang, “mlrmbo: A
toolbox for model-based optimization of expensive black-box functions,”
2016.

[29] B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, Z. Jones, and
G. Casalicchio, mlr: Machine Learning in R, R package version 2.9.
[Online]. Available: https://github.com/mlr-org/mlr

[30] B. Bischl, M. Lang, O. Mersmann, J. Rahnenführer, and C. Weihs,
“BatchJobs and BatchExperiments: Abstraction mechanisms for using R
in batch environments,” Journal of Statistical Software, vol. 64, no. 11,
pp. 1–25, Mar. 2015.

