
Faster Model-Based Optimization through
Resource-Aware Scheduling Strategies

Jakob Richter1,∗, Helena Kotthaus2,∗, Bernd Bischl3, Peter Marwedel2,
Jörg Rahnenführer1, and Michel Lang1

1 TU Dortmund University, Department of Statistics,
{richter,rahnenfuehrer,lang}@statistik.tu-dortmund.de

2 TU Dortmund University, Department of Computer Science 12,
{firstname.lastname}@tu-dortmund.de

3 LMU München, Department of Statistics,
bernd.bischl@stat.uni-muenchen.de

∗: Authors with equal contributions

Abstract. We present a Resource-Aware Model-Based Optimization
framework RAMBO that leads to efficient utilization of parallel computer
architectures through resource-aware scheduling strategies. Conventional
MBO fits a regression model on the set of already evaluated configura-
tions and their observed performances to guide the search. Due to its
inherent sequential nature, an efficient parallel variant can not directly
be derived, as only the most promising configuration w.r.t. an infill cri-
terion is evaluated in each iteration. This issue has been addressed by
generalized infill criteria in order to propose multiple points simulta-
neously for parallel execution in each sequential step. However, these
extensions in general neglect systematic runtime differences in the con-
figuration space which often leads to underutilized systems. We estimate
runtimes using an additional surrogate model to improve the scheduling
and demonstrate that our framework approach already yields improved
resource utilization on two exemplary classification tasks.

Keywords: Black-Box Optimization, Hyperparameter Tuning, Model
Selection, Model-Based Optimization, Resource-Aware Scheduling, Per-
formance Management, Parallelization

1 Introduction

In the field of hyperparameter optimization for machine learning methods, ef-
ficient black-box optimization is often necessary to obtain a well-performing
hyperparameter configuration for a given data set. A state-of-the-art optimiza-
tion strategy for expensive black-box functions is the model-based optimization
(MBO) [6]. MBO is an iterative optimization algorithm that starts on an initial
set of already evaluated configurations. In each step a regression model is fitted
on the so far available evaluations. It serves as a surrogate model to predict the
outcome of the black-box on yet unseen configurations. The infill criterion of

2 Richter J., Kotthaus H. et al.

the model guides the search to a new configuration which is usually a compro-
mise between good predicted performance and uncertainty of the search space
region – expected improvement is a popular choice. The new configuration is
evaluated, appended to the current data and the next iteration step starts un-
til the budget of evaluations is depleted. Many extensions to the basic MBO
algorithm have been suggested for parallel point proposal [3].

One popular application for MBO is hyperparameter tuning [12, 10] where the
objective function is defined as a resampled performance measure of a machine
learning algorithm. Here, resource requirements like CPU utilization or memory
usage heavily vary depending on the type and configuration of the applied ma-
chine learning algorithm. Heterogeneous runtimes have already been addressed
in [11] where the authors suggest to model these with an additional surrogate
leading to an “expected improvement per second” which favors less expensive
configurations. We also use surrogate models to estimate resource requirements
but instead of adapting the infill criterion, we use them for efficient scheduling
of parallel point evaluations. Resource-aware scheduling is an active field of re-
search which is often tailored specifically for different hardware platforms, from
small embedded systems [13] up to heterogeneous clusters [4]. In contrast to
these classical scheduling problems, we are in control of the job generation as we
can query the resource model for jobs with suitable resource requirements and
postpone or skip suggested jobs if deemed not promising enough.

2 Resource-Aware Model-Based Optimization

Our framework (RAMBO) is shown in Fig. 1. In the first of three steps, the MBO
Method proposes a set of promising configurations w.r.t. the infill criterion.
Each configuration forms a job with different resource demands. Based on all
previous evaluations, we build surrogate regression models to predict the com-
putational resources for arbitrary configurations. Such a model is called Job
Utility Estimator and is used to create Job Profiles. Configurations to evaluate
are selected in the Job Selection step. Jobs are prioritized depending on their
estimated usefulness for optimization and their predicted resource requirements.
The Scheduling step uses the estimated Job Profiles and a System Description
(e.g., number of CPUs and free memory) to efficiently map the jobs to the avail-
able resources. The jobs are started and can be monitored by a Job Tracker.
Since job profiles are only estimated, a job whose resource utilization deviates
from its predicted requirements might need to be rescheduled or stopped to guar-
antee efficient resource utilization. We propose two possibilities to update the
model with results. One way is the synchronous feedback, where the results of
all jobs within one iteration are gathered before each model update. The other
way is to update the model each time a job has finished its computation in an
asynchronous fashion. Either way, the updated model is then used to propose
new candidate points.

To demonstrate our general framework, we show a simple exemplary setup
in this work. We pick kriging as surrogates to model the misclassification error

Faster MBO through Resource-Aware Scheduling Strategies 3

Scheduling &
Job Tracker

Job Profile:
#Resource

Demands
#Priority

Mapping Method
Outlier Handling

Job Selection

Syn. vs. Asyn.
Feedback

System
Description:
#CPUs
#Memory

MBO Method

Job Utility Estimator Infill-Criterion

Fig. 1. Ressource-Aware Model-Based Optimization Framework.

and the logarithmic runtime. We opt for a multipoint Lower Confidence Bound
(LCB), which is an optimistic estimate of the objective function, similar to [5]
as infill criterion, which we call qLCB. qLCB simultaneously generates q con-
figurations by drawing q random values λi (i = 1, . . . , q) from the exponential
distribution with a mean of 2. Each λi results in a different trade-off between
exploitation (λi ↓) and exploration (λi ↑) and thus leads to a different optimal
configuration x∗i after solving

x∗i := arg min
x

[LCB(x, λi)] = arg min
x

[ŷ(x)− λiŝ(x)] . (1)

Here, ŷ(x) denotes the posterior mean and ŝ(x) the root of the posterior standard
deviation of the regression model at point x, respectively. Unfortunately, there
is no direct ordering of the set of obtained candidates x∗i . Therefore, we assign
candidates with a balanced exploration-exploitation trade-off a higher priority:
pi = − |log(λi)− log(2)| is inversely proportional to the absolute distance of λi
to its expected value 2 on a log-scale.

For scheduling, we use the synchronous approach. In each iteration we gen-
erate a list of q = 3m proposed jobs with the help of qLCB. We then determine
the job ji∗ , i∗ := arg maxi pi, with highest priority and run it CPU1 exclusively.
Accordingly, on a system with m homogenous CPUs the remaining jobs are
scheduled on CPU2, . . . ,CPUm, limited by the upper time bound t̂i∗ , which is
directly derived from the estimated runtime of job ji∗ . Jobs which have an es-
timated runtime t̂i ≤ t̂i∗ are mapped in decreasing order of their priorities to
the remaining CPUs in a greedy first fit manner. A job ji is mapped on CPUk

if its runtime t̂i ≤ t̂i∗ −
∑

i∈Jk
t̂i where Jk is the set of jobs already mapped to

CPUk. Jobs of the inital list that do not fit on any CPU are discarded. If any
CPU is left without a job we query the surrogate model for a new job for each
CPU with a runtime smaller or equal to t̂i∗ to fill the gaps. When all scheduled
jobs are evaluated the surrogate model is updated and the iteration starts over.

4 Richter J., Kotthaus H. et al.

3 Evaluation

The subject of the experimental setup is to apply our framework on the w6a4

and magic045 data set to configure an SVM with the radial basis function kernel

k(x,x′) = exp(−γ ‖x− x′‖2) (2)

as implemented in the R package e1071 [7], based on libsvm. The kernel param-
eter γ and the cost C of constraint violations are both box-constrained to the
interval [−15, 15] on a log2-scale. We compare our approach to two established
alternatives:

Random Search (RS): A simple parallelized random search. This relatively
naive yet often effective [1] approach does not need a synchronization step
like MBO, therefore the next random point will be scheduled immediately
after each function evaluation which guarantees maximum load of all CPUs.

qLCB: A simple MBO approach with a multipoint LCB infill criterion [3], using
a kriging model and naive scheduling. At each sequential step, q = ncores

points are selected minimizing the LCB (1) w.r.t. random λi ∼ Exp(1
2)

(i = 1, . . . , q).

Since the concept of a fixed budget of evaluations does not translate well into a
scenario with heterogeneous runtimes, we define the budget via the elapsed time.
We use a 3-fold cross validation to define the objective function for the tuner
and an outer 10-fold cross validation to evaluate the optimization results. All
variants start with an initial latin hypercube design with 10 points. To increase
comparability, initial designs are fixed per outer cross-validation fold.

The software is implemented in R using mlr6 to interface the machine learn-
ing algorithms and mlrMBO7 as optimization toolbox. BatchExperiments [2] is
used to parallelize the experiments on high performance computing cluster. The
traceR framework [8, 9] guarantees reliable measures of computational resources.

Fig. 2 shows the mean misclassification errors (MMCE) of the best configu-
ration after 1, 10, 120 and 180 minutes. The left hand side displays the tuning
error, i.e. the over-optimistic error on the internal tuning set. The right hand
side shows the MMCE on the outer cross-validation. Unfortunately, on these
data sets only marginal improvements are achieved after evaluation of the initial
design. Yet our RAMBO approach seems to perform well, yielding compara-
ble performance and sometimes slightly less variance. The reasons for this can
be found in Fig. 3 which visualizes the mapping of parallel jobs. We can ob-
serve unused CPU time for qLCB whereas RAMBO balances long execution times
more evenly. The estimation of runtimes reliably estimates the runtimes so that
only 2.3% of the evaluations exceed t̂+ 2 · s(t̂). qLCB often schedules four jobs

4 Platt: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/w6a
5 Bock: https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope
6 Bischl et al., mlr: Machine Learning in R. https://github.com/mlr-org/mlr
7 Bischl et al., mlrMBO: Model-Based Optimization for mlr. https://github.com/

berndbischl/mlrMBO

Faster MBO through Resource-Aware Scheduling Strategies 5

w6a magic04

0.0125

0.0150

0.0175

0.0200

0.0225

0.13

0.14

1 10 120180 1 10 120180
time (minutes)

M
M

C
E

 (
tu

ni
ng

)

w6a magic04

0.010

0.015

0.020

0.025

0.11

0.12

0.13

0.14

0.15

1 10 120180 1 10 120180
time (minutes)

M
M

C
E

 (
te

st
) method

RS

qLCB

RAMBO

Fig. 2. Averaged misclassification errors (MMCE): tuning (left) and test data (right)
for the best observed configuration after a given time budget.

w6a magic04

1
2
3
4

1
2
3
4

R
A

M
B

O
qLC

B

0 100 200 0 100 200
time (minutes)

C
P

U

Fig. 3. Scheduling visualization for one run: The boxes show the mapping of jobs on
CPUs. Less empty spaces indicate higher CPU utilization. Vertical lines indicate the
end of one MBO iteration.

with vastly different runtimes and hence wastes available CPU time idling. Thus
our results demonstrate that RAMBO achieves higher CPU utilization, meaning
more evaluations which yields better knowledge of the hyperparameter space
and thus higher confidence in the optimization result. It also shows on magic04

that it not only prefers short jobs but is also able to schedule long jobs more
efficiently. On the w6a dataset RAMBO is capable of evaluating twice as many con-
figurations as the unscheduled baseline method qLCB. In contrast it only yields
25% more evaluations on the magic04 dataset which indicates that promising
configurations have longer runtimes then average and vice versa for w6a.

4 Conclusion

With our RAMBO framework we present a novel approach to perform a faster
model-based optimization through resource-aware scheduling. We demonstrate
that our yet heuristic mapping approach already leads to improved resource
utilization and thus to more evaluations within the same time budget. This po-
tentially yields a better knowledge of the hyperparameter space and thus higher
confidence in the optimization result. In order to efficiently use hardware re-
sources, we are planning further improvements. Firstly, further work will con-

6 Richter J., Kotthaus H. et al.

centrate on integrating memory profiles since memory usage heavily influences
runtime if the amount of RAM in the system is too small to hold all required
data. Secondly, we aim to improve the resource estimation. Thirdly, we are plan-
ning to implement dynamic scheduling of jobs for cases of remaining deviations.
Fourthly, we plan to implement a multi-objective approach with respect to hard-
ware costs, memory, runtime and priority for performance optimization for an
more optimized resource-aware scheduling strategy. This is especially important
for an efficient utilization of heterogeneous architectures.

Acknowledgments. This work was partly supported by Deutsche Forschungs-
gemeinschaft (DFG) within the Collaborative Research Center SFB 876, A3.

References

1. Bergstra, J., Bengio, Y.: Random Search for Hyper-Parameter Optimization. The
Journal of Machine Learning Research 13(1), 281–305 (2012)

2. Bischl, B., Lang, M., Mersmann, O., Rahnenführer, J., Weihs, C.: BatchJobs and
BatchExperiments: Abstraction Mechanisms for Using R in Batch Environments.
Journal of Statistical Computation and Simulation 64(11), 1–25 (2015)

3. Bischl, B., Wessing, S., Bauer, N., Friedrichs, K., Weihs, C.: MOI-MBO: Multiob-
jective Infill for Parallel Model-Based Optimization. In: Learning and Intelligent
Optimization Conference. Florida (2014)

4. Delimitrou, C., Kozyrakis, C.: Quasar: Resource-efficient and QoS-aware Cluster
Management. In: ASPLOS ’14. pp. 127–144. ACM (2014)

5. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Parallel Algorithm Configuration. In:
Learning and Intelligent Optimization, pp. 55–70. Springer (2012)

6. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient Global Optimization of Expensive
Black-Box Functions. Journal of Global Optimization 13(4), 455–492 (1998)

7. Karatzoglou, A., Meyer, D., Hornik, K.: Support Vector Machines in R. Journal
of Statistical Software 15(1), 1–28 (2006)

8. Kotthaus, H., Korb, I., Lang, M., Bischl, B., Rahnenführer, J., Marwedel, P.: Run-
time and Memory Consumption Analyses for Machine Learning R Programs. Jour-
nal of Statistical Computation and Simulation 85(1), 14–29 (2015)

9. Kotthaus, H., Korb, I., Marwedel, P.: Performance Analysis for Parallel R Pro-
grams: Towards Efficient Resource Utilization. Tech. Rep. 01/2015, Department of
Computer Science 12, TU Dortmund University (2015), SFB876 Project A3

10. Lang, M., Kotthaus, H., Marwedel, P., Weihs, C., Rahnenführer, J., Bischl, B.:
Automatic Model Selection for High-Dimensional Survival Analysis. Journal of
Statistical Computation and Simulation 85(1), 62–76 (2015)

11. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian Optimization of Ma-
chine Learning Algorithms. In: NIPS workshop on Bayesian optimization, sequen-
tial experimental design, and bandits. pp. 2960–2968 (2012)

12. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: Combined
Selection and Hyperparameter Optimization of Classification Algorithms. In: Pro-
ceedings of ACM SIGKDD. pp. 847–855 (2013)

13. Tillenius, M., Larsson, E., Badia, R.M., Martorell, X.: Resource-Aware Task
Scheduling. ACM Trans. Embed. Comput. Syst. 14(1), 5:1–5:25 (2015)

