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Abstract. In many real-world applications concerning multi-objective
optimization, the true objective functions are not observable. Instead,
only noisy observations are available. In recent years, the interest in the
effect of such noise in evolutionary multi-objective optimization (EMO)
has increased and many specialized algorithms have been proposed. How-
ever, evolutionary algorithms are not suitable if the evaluation of the ob-
jectives is expensive and only a small budget is available. One popular so-
lution is to use model-based multi-objective optimization (MBMO) tech-
niques. In this paper, we present a first investigation on noisy MBMO.
For this purpose we collect several noise handling strategies from the
field of EMO and adapt them for MBMO algorithms. We compare the
performance of those strategies in two benchmark situations: Firstly,
we perform a purely artificial benchmark using homogeneous Gaussian
noise. Secondly, we choose a setting from the field of machine learning,
where the structure of the underlying noise is unknown.

Keywords: Noisy Optimization, Machine Learning, Bayesian Optimiza-
tion, Model-Based Optimization, Multi-Objective Optimization

1 Introduction

In many practical optimization scenarios it is necessary to consider multiple
contradicting objectives. In such multi-objective optimization (MOQ) problems
several solutions with optimal trade-offs across the objectives are available. Most
MOO algorithms assume that repeated evaluations of the same solution will
yield the same objective values. However, in many applications this assumption
is violated due to the presence of noise.

The field of machine learning offers a lot of different settings in which multiple
performance measures can be considered: runtime vs. predictive power, model
sparsity vs. predictive power or multiple measures from ROC analysis [8]. ROC
measures are, in the case of binary classification, derived from the so-called con-
fusion matrix, which tabulates the classes of the prediction versus the classes of
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the true outcome. Examples are the true-positive and false-positive rate, whose
trade-off is usually interesting to consider in imbalanced problems or problems
with unknown error cost structure. Machine learning models are usually eval-
uated by resampling techniques [2]. These split the dataset repeatedly into a
training and a corresponding test set — the training sets are used to train the
models, their performance is evaluated on the test sets. Naturally, the resulting
performance depends on the splits used, which leads to noise in the optimization.

In recent years, many strategies have been proposed to solve noisy MOOs.
Most of them are based on EMO algorithms [1,6,9,14,23]. However, evolutionary
algorithms (EAs) suffer from some major disadvantages. One drawback is the
large number of function evaluations required to achieve a good approximation
of the optimal set, however, in many practical settings the budget is limited. For
example, the training of a support vector machine (SVM) on a dataset contain-
ing about a million samples can take several hours [12]. Hence, it is often not
practical to tune the hyperparameters of a SVM on such datasets using EMO
techniques. We formerly proposed to use model-based multi-objective optimiza-
tion (MBMO) to tackle such problems [11]. However, very little work has been
published on MBMO algorithms solving noisy MOOs.

Knowles et al. [18] used ParEGO [17], a special MBMO variant to solve noisy
MOOs. They were able to show that ParEGO is quite robust to the presence
of noise and still achieves reasonable results. However, in settings with noisy
observations ParEGO was outperformed by two specialized algorithms [10, 28].
One approach of handling noise in MBMO algorithms is to use the mean value
of replicated evaluations for each parameter setting [6]. In [19] this approach was
compared with a re-interpolating approach.

The main contribution of this paper is a first look into noise handling using
MBMO algorithms and the presentation of two naive and two advanced noise
handling strategies. All of them can be added to any MBMO algorithm. In two
benchmark studies we investigate their effectiveness, however, we are not yet
able to give a precise rule which strategy should be used in which situation.

2 Model-Based Multi-Objective Optimization

Multi-objective optimization refers to an optimization setting with a vector-
valued objective function f = (f1, fa,.. ., fm) : X = X1 X ... x Xy — R™ and
with the usual convention that each f; is to be minimized. In general, multiple
objectives are contradicting, and we are interested in finding the set of all optimal
trade-offs. A solution x € X is said to dominate a solution &’ € X if x is at least
as good as z’ in all objectives and strictly better in at least one objective. This
dominance relation is sufficiently strong for a definition of optimality: a solution
x € X is called Pareto optimal if and only if it is not dominated by any other
solution ' € X. The set of all non-dominated solutions is called the Pareto set,
the set {f(a:) ’ x € X is Pareto optimal} is called the Pareto front.

Many different MBMO algorithms have been proposed within the last years.
Most of them are based on ideas of the Efficient Global Optimization (EGO)
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Algorithm 1 General sequential model-based optimization procedure

Require: expensive blackbox function f(x): X — R™, budget n

1: generate initial design D = {V), ..., ™)} ¢ x
2: evaluate Y = £(D) = {f (D), ..., f(x™ini))}

3: set 1 := Ninit + 1

4: while i++ <n do

5: fit surrogate model(s) f on J and D

6: x() = arg max, ., Inf(z)

7 evaluate y = f(z¥)

8: update D <~ DU {2V} and Y + Y U {yV}

9: end while

10: return Pareto set and front of D and Y

procedure [15]. At first EGO samples and evaluates an initial design of size nt,
typically using Latin Hypercube Sampling.

Then a surrogate regression model (typically a Kriging model) is fitted to
all design points obtained so far and optimized with regard to a so-called infill
criterion (Inf). A new candidate point is proposed and evaluated with the objec-
tive function. The procedure iterates until a stopping criterion is reached, which
is usually a budget on the number of function evaluations or global runtime.

The general procedure of MBMO algorithms is described in Algorithm 1.
Although most steps of the MBMO procedure are close to the EGO algorithm,
there are some important differences. Mainly, the model fitting procedure has to
be adapted to the multi-objective context. Most MBMO algorithms are adjusted
by fitting distinct surrogate models to each objective function. As in EGO, new
points are proposed by optimizing an infill criterion. However, this step cannot
be adopted directly from EGO, since there might be multiple surrogates.

There is a variety of MBMO algorithms, which are all based on this general
procedure, but they differ in the number of fitted models, the infill criterion, the
optimization strategy and many more details. An overview of many published
MBMO algorithms including their taxonomy is presented in [13].

Although our work on noisy MBMO is compatible with any MBMO algo-
rithm, we decided to focus on one algorithm for simplicity. The SMS-EGO [20]
algorithm with its good performance in previous benchmark studies (see [11,13])
appears to be a good choice for this. It works by fitting individual Kriging models
to each objective and choosing new design points by maximizing their hypervol-
ume contribution to the current Pareto front approximation.

3 Noisy Multi-Objective Optimization

In noisy MOO the true objective functions f cannot be observed. Instead, we
have observations y(x) = f(x) + e€(x) that are affected by observational noise
e(x) = {e1(x), ..., em(x)}. In the general blackbox case we cannot make any as-
sumptions about the characteristics of €. Since this case is hard to handle, most
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noise handling algorithms do make further assumptions on €. Typical assump-
tions are: € is stochastically independent of x, € is stochastically independent of
the point in time of the evaluation, ¢; is stochastically independent and identi-
cally distributed for j = 1,...,m or that the expected value of € is 0 [16].

Noise introduces two main challenges that should be addressed by the spe-
cialized optimizer:

(I) The noisy observations provide misleading information. This can induce in-
sufficient results that are not close enough to the true optimal Pareto set.

(IT) Noise may lead to overoptimistic assessment of obtained objectives. Thus,
the returned Pareto front is very likely to overrate the true Pareto front.

The main idea for handling noise is to perform k (additional) evaluations for
each x-setting, also called re-evaluations. This reduces the noise’s standard de-
viation by a factor of vk + 1 [14]. Assuming E(e) = 0, the mean value of all
re-evaluations of & is an unbiased estimator for f(x). On the one hand its quality
can be improved by increasing k, on the other hand the optimizer has to spend a
part of its budget for each re-evaluation. In particular, in settings with restricted
budgets, the number of re-evaluations should be kept as small as possible.

In recent years, many different EMO strategies have been proposed to solve
noisy MOOs. Most of them describe how to choose z-settings for re-evaluations.
In this chapter we will give a brief introduction to some naive and advanced
approaches. For an overview please refer to Zhou et al [27].

3.1 Naive Variants

The following two naive strategies for choosing the re-evaluations serve as a basis
for the advanced methods. Due to their simplicity both strategies can be added
to most optimizer, in particular to EAs, MBMO and even random search.

The Enlarged Strategy The simplest idea is to ignore the fact that y is affected
by noise and perform optimization as if y was deterministic (i.e. assume that
y = f). Hence, every setting x is evaluated once, after it was proposed by the
algorithm (k = 0). Since no budget needs to be spend on re-evaluations, a higher
number of different x settings can be evaluated (the space of explored, distinct
points is enlarged). Since there is no special strategy for handling noise, enlarged
algorithms neither address (I) nor (II). (I) may be solved by the brute force of
the larger budget, but the returned Pareto front of enlarged algorithms is very
likely to be too optimistic.

The Repeated Strategy The second naive strategy is to perform a constant
number of k re-evaluations for every x-setting directly (the evaluations are re-
peated). Then the mean value of all k + 1 evaluations is used as the new target
value for optimization and optimization is performed as if deterministic. This
intuitive strategy reduces the strength of noise for each x by a factor of vk + 1
and has been applied in some practical scenarios (see, e.g., [6]). It is also highly
related to resampling strategies from machine learning applications. Perform-
ing a k-fold cross-validation is similar to performing k evaluations of the same
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a-setting. By applying a repeated strategy, the effects of (I) and (II) can be
reduced.

3.2 Advanced Strategies

It seems not that meaningful to evaluate a weak noisy, inferior point as often as a
very noisy, promising setting. There are several approaches to adapt the number
of re-evaluations during optimization. One idea is to increase the number of
re-evaluations while optimization proceeds [1]. Other options are to choose the
number of re-evaluations according to the observed standard deviation [1] or to
use a statistical testing procedure for comparing two solutions and to perform
re-evaluations until their difference becomes significant to a given level [23].

In this paper we focus on two different advanced strategies. Firstly, the
Rolling Tide EA (RTEA) proposed by Fieldsend [9], which gives a heuristic
on how to choose promising settings for re-evaluations. Secondly, we propose a
new strategy that combines the ideas of the two described naive approaches.

The Rolling Tide Strategy The main idea of the RTEA is described in Algo-
rithm 2. It handles noise by re-evaluating only promising settings, while inferior
settings are evaluated only once. In each iteration, after a new point has been
proposed using evolutionary operators, k already evaluated points are chosen for
re-evaluation. The selection of these k points is based on the dominance relation
and the number of prior re-evaluations: Sequentially, those Pareto optimal points
with the least number of re-evaluations are chosen. New points are only proposed
in the first part of the optimization, the second part is used to solely refine
the archive. The actual RTEA contains more details on how to perform the
evolutionary operations and how to efficiently update the Pareto set. We omit
these details since they are not related to noise handling.

The Reinforced Strategy This strategy combines the ideas of the enlarged
and the repeated algorithm aiming to eliminate the disadvantages of these naive

Algorithm 2 The Rolling Tide Evolutionary Algorithm (RTEA)

Require: noisy blackbox function y(x) : X — R™, number of re-evaluations k, pro-
portion of evaluations z to solely refine the archive, budget n
1: Generate and evaluate initial design of size Mint
2: Set 7 := MNinit
3: while i++ < n do
4 if i < (1—2)-n then
5: Propose a new ¥ using evolutionary operators
6
7
8

Calculate y(z¥) and update archive and Pareto set A

end if

for k iterations do
9: choose ) € A with the lowest amount of re-evaluations
10: Re-evaluate y(w(j)) and update both the archive and A
11: end for
12: end while
13: return Pareto set A and corresponding Pareto front
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strategies. Our first results showed that the main drawback of the enlarged
strategy are overly optimistic Pareto fronts, while for the repeated strategy it is
the high number of unnecessary re-evaluations. Therefore, we propose to start
the optimization using the enlarged strategy and only one evaluation per x. In
the end k re-evaluations are done for each Pareto optimal point (the final Pareto
front is reinforced). Thus, the reinforced strategy uses a large budget just like
the enlarged strategy, but also returns a reliable estimation of the Pareto front.

3.3 Noise Handling in MBMO Algorithms

To the best of our knowledge, very little work has been published on noise
handling in MBMO algorithms up to today. The general capability of MBMO
algorithms to solve noisy MOOs was shown in [18]. There are also investiga-
tions on solving noisy applications by using the repeated strategy [6,19] and
some specialized algorithms have been introduced [10,28]. However, no work on
adapting advanced strategies for choosing re-evaluations has been published yet.
Since all described strategies solving noisy MOOs can be used within the MBMO
framework, we will employ these approaches as a basis for further investigations.

As representative for advanced noise handling strategies we chose RTEA and
adapted it toward MBMO by exchanging the evolutionary operations from the
RTEA by their MBMO equivalents. This is implemented by inserting lines 8 to
11 of Algorithm 2 into Algorithm 1 after line 9. Moreover, in the RTEA each
point is evaluated directly after it was chosen for re-evaluation. We suggest to
collect the new proposed point and all k£ points for re-evaluation in a batch in
order to evaluate them in parallel. This procedure comes with the disadvantage
that the Pareto front cannot be updated in between the re-evaluations.

Almost all MBMO algorithms use Kriging models as surrogates. But in terms
of noisy optimization the interpolating nature of Kriging is problematic: For
each () € D, the model will return the corresponding y¥ € ). Consequently,
Kriging models cannot be fitted to repeated stochastic evaluations.

We are aware of two solutions for this issue: Firstly, the model can be fitted
on the mean values of the repeated evaluations. Thus, information about the
strength of the noise is not used. Secondly, by adding a so-called nugget effect
to the Kriging model the model loses its interpolating nature. It becomes an
approximating model and can be fitted to repeated evaluations. This is achieved
by introducing parameter A € [0, 00), which controls the strength of smoothing,
where A = 0 corresponds to use no smoothing, i.e., use interpolating Kriging.
Here we focus on the first solution planning to investigate the second one in
subsequent studies.

The final Kriging models can also be used to improve the optimization result.
Instead of returning the Pareto front of ) (the tune front) the front of the models
(the model front) can be used. For this the Pareto set of D is calculated and their
outcomes are predicted by using the final models. Naturally, the tune front and
the model front are identical, if interpolating Kriging is used. However, if a small
nugget effect is added, the model may smooth the affected tune front. Especially
for the enlarged strategy we expect the model front to be more realistic.
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4 Artificial Experiment

To test and compare the proposed naive and advanced noise handling strate-
gies, we conduct two benchmarks. In this section, we use artificial test functions
contaminated with homogeneous Gaussian noise.

4.1 Experimental Setup

For comparison of our four proposed approaches, the noise handling strategies
are fused with the SMS-EGO algorithm. Additionally, these algorithms are com-
pared against a baseline comprised of the original RTEA and the two naive
strategies combined with a simple random search strategy (rs). This results in
a total of seven different algorithms. They are abbreviated using the pattern
class_noisehandling, e.g, mbmo_rt refers to the SMS-EGO algorithm using the
rolling tide (rt) noise handling strategy. As test functions we use UF1-UF10 from
the CEC 09 challenge [26]. For noise we add normal distributed random vectors
with expected value 0 and covariance matrix o - I,,, ¢ € {0,0.01,0.1,1}. This
setting mostly matches with an experimental setup proposed by Fieldsend [9].

To simulate an expensive setting, we limit the budget to 40d iterations, of
which 8d are reserved for the initial design and 32d for the sequential optimiza-
tion. The noise handling strategy is allowed to perform k additional evaluations
in each sequential iteration, resulting in a total budget of 40d+32d k evaluations.
Table 1 shows how the different strategies utilize their budget. Since SMS-EGO
is an expensive optimization algorithm (m Kriging models have to be fitted in
each iteration), we decide to investigate a scenario with d =5 and k = 4.

Additional parameters of the SMS-EGO are set as in previous benchmarks
[11]. As surrogate we use a Kriging model and add a small nugget effect (A = 10~%)
for numerical stability. For the RTEA we apply simulated binary crossover
(n =10,p = 0.7) and polynomial mutation (n = 25,p = 0.3).

The analysis is based on the so-called test front, which is generated by eval-
uating the final Pareto set on the true, deterministic function. Performance
of the different approaches is evaluated and compared by two different mea-
sures: Firstly, goodness of optimization (see (I)) is measured by the dominated
hypervolume based on the test fronts. For statistical analysis we perform an

Table 1. Partition of the budget for the individual noise handling strategies. The total
budget is 8d + 32d(k + 1) for all strategies. The number of iterations for the reinforced
variant changes with the size of the final Pareto front.

Algorithm Htoken[ Ninit [Evaluations per iteration[Number of iterations

enlarged enl 8d 1 32d(k+1)
repeated rep (8d(k + 1) k+1 32d — Lkiﬂ&lj
rolling tide|| rt 8d k+1 32d
reinforced || reinf 8d 1 -
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ANOVA and post-hoc pairwise one-sided paired t-tests on the normalized hy-
pervolume values [7]. Secondly, to judge the approximation quality of the tune
front (see (II)), we calculate the so-called Average Hausdorff distance [22] (pa-
rameter p = 1) between the tune front and the test front.

The experiments are implemented using our own software packages written in
R, including mirMBO [5], mlr [3,21] and BatchExperiments [4]. Our experiments
are executed on the LiDOngrL cluster of the TU Dortmund university.

4.2 Results

The resulting hypervolume values for all algorithms, test functions and different
noise strengths are displayed in Fig. 1. First of all, we can state that all SMS-
EGO variants beat the three baselines in nearly all cases.

In the deterministic case (o = 0) the results support our expectation. Since
re-evaluating points does not give additional information, the enlarged and re-
inforced strategies perform best. Surprisingly, this result does also hold for the
moderate noise cases o € {0.01,0.1}. The hypervolume values of the individual
algorithms are only slightly smaller than the values in the deterministic case,
while the ranking of the algorithms stays the same. It seems that ignoring the
noise is the best way to handle it.
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Fig. 1. Dominated hypervolume of the seven algorithms on the ten test functions.
Reference point is (11, 11) for UF1 - UF7 and (11, 11, 11) for UF8 - UF10.
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This general picture changes in the presence of strong noise (¢ = 1). Per-
formance of all algorithms deteriorates and there are no clear differences in
hypervolume between the algorithms on most of the test functions. On some
test functions the performance of SMS-EGO is even equivalent to the random
search baselines. We speculate that the combination of the large noise and the
low budget is too complicated to be solved much better than using simple ran-
dom search. In fact, all Pareto fronts of the UF test functions range from (0, 1) to
(1,0), but the noise can range within [—3,3] . Hence, the noise is even stronger
than the actual trade-offs between the objectives.

The results of the ANOVA are presented
in Table 2. All parameters have a highly sig-
nificant influence, though the low p-values are
intensified by the rather large number of 2800 Table 2. Results of the ANOVA
observations. Table 3 shows the results of the o the artificial experiment.
post-hoc t-tests, which mainly confirm the im- variable Hsum Sq‘ p-value
pression we got from the figures. The tests give algorithm 1.61]< 2e-16
a clear ranking of the algorithms and some function 10.96|< 2e-16
groups of strategies can be identified. The best ¢ 0.71)< 2e-16
group contains the enlarged and the reinforced —replication||  0.03] 0.0081
SMS-EGO variants. Although the enlarged variant is significantly better than the
reinforced one, the difference between them is much smaller than the differences
towards the remaining algorithms. The second best group includes the repeated
and the Rolling Tide variant of SMS-EGO, followed by the third group with the
original RTEA and the enlarged random search. The poor performance of the
RTEA can be explained by the expensive setting of our experiment. Naturally,
EAs need a lot more function evaluations to reach good results. The repeated
random search is worse than every other variant.

Table 4 displays the average runtimes of the seven different algorithms across
all test functions. It shows that fitting the Kriging model to a larger number of
observations variants results in a notable increase in modeling overhead. How-
ever, this can mostly be neglected in the expensive setting.

4 As per the 3o rule, 99.7% of normal distributed random numbers are within +3o.

Table 3. Post-hoc pairwise one-sided paired t-tests for the alternative that the method
in the row reached a lower hypervolume than the one in the column.

Hmbmo,enllmbmo;einf‘mbmoxtlmmeJepl ea_rt| rs_enl

mbmo_reinf 5.1e-05 - - - - -
mbmo_rt < 2e-16 1.4e-14 - - - -
mbmo_rep < 2e-16 < 2e-16| 2.8e-05 - - -
ea_rt < 2e-16 < 2e-16| < 2e-16| < 2e-16 - -
rs_enl < 2e-16 < 2e-16| < 2e-16| < 2e-16| 0.0086 -
rs_rep < 2e-16 < 2e-16| < 2e-16] < 2e-16|< 2e-16|< 2e-16
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Table 4. Average runtimes of the different algorithms.

algorithm "rSJep‘rs,enl‘ea,rt‘mbmo,rep‘mmeJt‘mbmo,reinf‘mbmo,enl
runtime [sec][[ 1 [ 3 [ 7 | 699 [ 8721 | 37327 [ 53965

4.3 Using the Nugget Effect

Although the enlarged strategy reaches the best hypervolume values, it cannot
overcome its main disadvantage. Fig. 2 shows the Average Hausdorff distances
between the tune and the test front for the enlarged and the reinforced variant.
Since in the case of 0 = 0 both the tune and the test evaluations return the same
values, the distances are 0. For all higher o—values we observe that the enlarged
strategy has high distances and returns overly optimistic Pareto fronts. On the
contrary, the reinforced strategy reaches essentially lower distances.

Besides the tune fronts, we can also look at the performance of model fronts.
Therefore, we enable the fixed nugget effect in the Kriging model. Subsequently,
we rerun the experiments adding different nugget effects A € {0.01,0.1,1} to
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Fig. 2. Average Hausdorff distances for the enlarged and the reinforced SMS-EGO
methods. Distances are calculated for the tune fronts with A = 10~® and for the model
fronts with A = 0.01.
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Table 5. Results of the ANOVA for the artificial experiment with added nugget effects
(left table). Post-hoc pairwise one-sided paired t-tests for the alternative that the A in

the row reached a higher hypervolume than the one in the column. (right table).

variable Hsum Sq[ p-value

algorithm 0.39|< 2e-16 A “ 1e-08 0'01‘ 0.1
A 0.09|< 2e-16 0.01 0.21 - -
function 11.33|< 2e-16 0.1 || 5.6e-07| 7.4e-06 -
o 1.30|< 2e-16 1 < 2e-16|< 2e-16|< 2e-16
replication 0.07|< 2e-16

the Kriging models. The results of the corresponding ANOVA are reported in
Table 5. The nugget effect has a significant influence on the hypervolume values.
The post-hoc tests for the nugget effect show that performance deteriorates
while using higher nugget effects. Only the smallest effect (A = 0.01) reaches
hypervolume values equal to those of the interpolating Kriging model. Thus, the
smallest nugget effect can be used during optimization and for calculation of the
final model front without deteriorating the hypervolume value.

The boxplots in Fig. 2 additionally show the distances for the model fronts.
Naturally, the model fronts perform worse than the tune fronts in the determin-
istic case (o = 0). This relationship flips with increasing noise, until in the case
o = 0.1 the model front is clearly superior for most test functions. For the rein-
forced strategy the usage of the model front does not improve the final Pareto
front. Furthermore, in most cases the tune fronts of the reinforced strategy are
better than the model fronts of the enlarged strategies.

5 Machine Learning Experiment

The second benchmark is a practical setting from machine learning. We consider
the bi-objective minimization of the false-negative and the false-positive rate
(FNR and FPR) in binary classification using SVMs with radial kernels.

5.1 Experimental Setup

In this setting each function evaluation corresponds to estimating the perfor-
mance of a given hyperparameter setting for the SVM using a resampling strat-
egy. While classical parameter tuning approaches would use a k-fold cross-vali-
dation for each setting, here a single 10% holdout is performed to reflect the
noisy optimization. If needed, the noise handling strategy can perform multiple
re-evaluations of a parameter setting, i.e., it can perform multiple holdout itera-
tions. This is not equivalent to the usual cross-validation, but especially for the
repeated strategies it is highly related.

As a general strategy for balancing FNR and FPR, class weighting can
be used. Without loss of generality it is sufficient to adapt the weight w for
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the positive class. We optimize the cost
parameter C and the inverse kernel each
within a region-of-interest of 2[=1%:15] a5
well as the class weighting parameter w
within the interval 2[=77 resulting in an
input dimension d = 3. All parameters are
optimized on a logarithmic scale. We run
the experiments on several data sets (see
Table 6), all of them are available on the
machine learning platform OpenML [24].
For an unbiased comparison of the final
Pareto fronts we perform tuning on 50%
of the data points and leave the remaining
50% for calculation of the final test front.
The same algorithms and further settings
as described in section 4 are used.

5.2 Results

Table 6. Description of the used data
sets. #obs is the number of observa-
tions and #feats is the number of fea-

tures in the respective data sets.

name H #obs‘ #feats
ada_agnostic 4562 48
eeg-cye-state 14980 14
kdd_JapaneseVowels|| 9961 14
pendigits 10992 16
phoneme 5404 5
spambase 4601 57
wind 6574 14
waveform 5000 40

In Fig. 3 the hypervolume values of the resulting test fronts are displayed. In con-
trast to the artificial experiment, here Rolling Tide and repeated variant of SMS-
EGO perform best. Both, the enlarged and reinforced variant reach lower values
and perform even worse than the RTEA and the repeated random search. The
baselines:

same effect can be seen
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Fig. 3. Dominated hypervolume for the second experiment (reference point (1.1, 1.1)).
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The enlarged random search is worse than the
repeated one. Both the algorithm and the data
set have a significant influence on the perfor-
mance (Table 7). As in the artificial experi-
ment, we can give a rather clear ranking of
the algorithms (Table 8), although the differ- ~ algorithm ||2.703e-4]< 2e-16
ences are not as explicit as before. However, data set  ||4.088e-4|< 2e-16
the ranking is rather different: the best algo- replication||0.074e-4|  0.266
rithms of the artificial experiment are now on

the second and third last ranks.

Table 7. Results of the ANOVA
for the artificial experiment.
variable H sum Sq\ p-value

6 Conclusion

In this paper, we took a first look at noise handling within MBMO algorithms.
We proposed several variants and evaluated their performance with two experi-
ments. In the first one, we used an artificial test set with homogeneous Gaussian
noise. In the second one, from a machine learning context, the noise is unknown
and likely does not follow any simple distribution, but is heterogeneous in X.
The results of our two experiments are contradictory in terms of the best
variant. In the first experiment, the enlarged and reinforced variant of SMS-EGO
performed best. Thus, performing more than one evaluation per x-setting is not
necessary to guide the optimization. For a reliable estimation of the Pareto front
one should either add a small nugget effect to the underlying Kriging model and
use its estimated front, or invest some final evaluations to reinforce the final front.
In the second experiment, all strategies using only a single evaluation for each
setting performed poorly and even worse than a repeated random search. In this
setting, the proposed Rolling Tide MBMO variant reached the best performance.
An intuitive explanation for the different behavior of our methods in the two
experiments can be given by looking at the noise effect in the underlying Kriging
models. The noise in the artificial experiment is homogeneous. In the Kriging
model, the correlation between observations is modeled in the covariance matrix.
Thus, the noise effect on individual points can be reduced by evaluating multiple
blurry points together due to the smoothing effect of the model. Hence, exploring
more points using the enlarged variant gives more information about the global

Table 8. Post-hoc pairwise one-sided paired t-tests for the alternative that the method
in the row reached a lower hypervolume than the one in the column.

HmmeJt[mbmo,rep[ ea,rt[ rs,rep[mbmo,reinf[mbmo,enl

mbmo_rep 0.00211 - - - - -
ea_rt 0.00053| 0.15213 - - - -
rs_rep 1.5e-07| 0.01358]0.07858 -
mbmo_reinf|| 1.3e-15 3.2e-14| 3.8e-11{1.2e-10 -
mbmo_enl < 2e-16 6.5e-16| 9.6e-14|3.0e-13 0.01164 -
rs_enl 9.2e-16 6.9e-15| 1.7e-13|3.3e-12 0.00087| 0.28380
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structure of the response. On the contrary, the noise in the machine learning
experiment is heterogeneous. Simply exploring more points in the X’ space cannot
reduce the noise efficiently and fails to gain more information compared to a re-
evaluation of the same point for a more reliable estimation of the observation.
In our future, work we will continue to investigate this topic with the aim
to understand how the different strategies for choosing the re-evaluations are
affected by different types of noise. Furthermore, we think that the smoothing
effect of the surrogate model has a great potential in guiding a noisy optimizer.
One possibility to improve this effect could be the integration of repeated evalu-
ations into the model, instead of using mean values. But then the interpolating
Kriging model cannot be used any longer. A reasonable alternative could be the
so-called stochastic Kriging approach [25]. Instead of using a fixed A, it could
also be promising to tune A during optimization. However, the results of this
paper showed that low A values always give the best results, independent of o.
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