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Abstract. Exploratory Landscape Analysis is an effective and sophisti-
cated approach to characterize the properties of continuous optimization
problems. The overall aim is to exploit this knowledge to give recommen-
dations of the individually best suited algorithm for unseen optimization
problems. Recent research revealed a high potential of this methodology
in this respect based on a set of well-defined, computable features which
only requires a quite small sample of function evaluations. In this paper,
new features based on the cell mapping concept are introduced and shown
to improve the existing feature set in terms of predicting expert-designed
high-level properties, such as the degree of multimodality or the global
structure, for 2-dimensional single objective optimization problems.

Keywords: exploratory landscape analysis, cell mapping, black-box op-
timization, continuous optimization, single objective optimization, algo-
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1 Introduction

For the optimization of difficult black-box problems, Fuvolutionary Algorithms
(EA) as well as related other metaheuristics are frequently employed. However,
different metaheuristics that should in principle be suitable for solving these
problems often reveal enormous performance differences or do not solve some
problems at all. Thus, the algorithm selection problem must be taken seriously,
which means choosing the right algorithm variant and setting its parameters
right. This problem has occupied numerous researchers in the last decade, see,
e.g., [15] and [2] for an overview.



The Ezploratory Landscape Analysis (ELA) approach as detailed in section 2
offers an alternative view onto algorithm analysis by focussing on problem analy-
sis. From a small sample of evaluated search points, we calculate a set of features
and learn classifiers in order to deduce what the main properties of the problem
are. Then, we can make an informed guess about which algorithm should be
chosen. One of the advantages of this approach is its extensibility: if new fea-
ture ideas come up, they can be seamlessly added to the existing ones. If they
characterize aspects of the optimization problems well, our prediction of the
problem type should improve. The only problem is that an increasing number
of features will make classification more difficult. Therefore, any added feature
should capture some problem aspects the standard features miss. In this work,
we investigate if features obtained from cell mapping techniques (detailed in sec-
tion 3) fulfill this requirement. We experimentally show in section 4 that this is
indeed the case, even if only a relatively small problem sample is employed. Such
a sample could be provided by random or Latin Hypercube Design (LHD) based
initialization of a metaheuristic optimization algorithm (possibly by repeated
initialization for restarts, in an amortized fashion), so that applying ELA with
cell mapping features does not come at additional cost and should be used when
choosing the proper algorithm for a previously unseen problem.

It should be added that while ELA focuses on real-valued optimization prob-
lems, there are related concepts for landscape analysis in combinatorial opti-
mization, e.g., Local Optima Networks [25] for detecting the topology of different
basins of attraction.

2 Exploratory Landscape Analysis

Exploratory Landscape Analysis (ELA) aims at characterizing optimization prob-
lems by means of cheaply computable features based on systematic sampling.
The final goal is the construction of a model which allows for an accurate pre-
diction of the best suited algorithm for an arbitrary optimization problem based
on the computed features.

During the last years important steps into this direction for single-objective
optimization problems have been made. In [18], the benchmarking framework
introduced in [19], was applied to the combined experimental results of the
benchmarking black-box optimization problem competition (BBOB, [10]). It was
investigated whether representative algorithms exhibit similar behavior within
the predefined BBOB function grouping. A set of high-level features derived
by experts were used to characterize the functions, i.e., the degree (none, low,
medium, high) of multimodality, global structure, separability, variable scaling,
search space homogeneity, basin-sizes, global to local contrast and plateaus. Of
course those are debatable to a certain extent. Using classification techniques
based on the high-level features per function instance two clusters of algorithms
could be distinguished.

In order to overcome the subjectivity of the previous approach, computable
experimental low-level features were introduced in [17] which reflect the land-
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Fig. 1: Relationships between low-level (light orange) standard ELA and high-
level (white) features.

scape properties of a problem. The features are grouped into six low-level feature
classes, i.e., measures related to the distribution of the objective function values
(y-Distribution), estimating meta-models such as linear or quadratic regression
models on the sampled data (Meta-Model) and measures for the convexity and
linearity (Convezity). Furthermore, local searches are conducted starting at the
initial design points (Local Search), the relative position of each objective value
compared to the median of all values is investigated (Levelset), and numerical
approximations of the gradient or the Hessian represent the class of curvature
features (Curvature). Each class contains a set of sub-features which result from
the same experimental data generated from the initial data sample. Fig. 1 visu-
alizes the assumed main relationships between the low-level feature classes and
the high-level features introduced in [19].

Experimental validation of these features was conducted based on success-
fully predicting the values of the high-level from the corresponding low-level
features. Both classification accuracy and a cost indicator representing the num-
ber of required function evaluations were included into the model building phase.
Additionally, the BBOB function grouping could be perfectly predicted by spe-
cific combinations of low-level features at moderate cost. Recently, optimal al-
gorithm selection for unseen optimization tasks was addressed in [3] by means
of the BBOB09/10 results. A sophisticated cost-sensitive learning approach al-
lowed for accurately predicting the best suited algorithm within a representative
algorithm portfolio.

Additional approaches were conducted in [24], based on five features concep-
tually similar to [17]. In [1], new problem features categorized into the classes
problem definition, hill climbs, and random points were introduced. The concept



of length scale, which measures the ratio of changes in the objective function
value to steps between points in the search space and its distribution, was sug-
gested by [21,22]. A first step into the direction of online algorithm selection
based on low-level features is made in [23].

3 Cell Mapping

The cell mapping techniques were originally proposed by Hsu [8]. These methods
are useful to determine the global behavior of nonlinear dynamical systems. The
main idea of these methods is based on the fact that the representation of the
numbers in a computer is finite. According to the precision of the machine, a
number does not only represent the number given by its digits, but also an
infinite amount of numbers within its neighborhood. The cell mapping approach
employs this discretization for dividing the state space into hypercubes. The
evolution of the dynamical system is then reduced to a new function, which is
not defined in R™, but rather on the cell space.

Two cell mapping methods have been introduced in order to study the global
dynamics of nonlinear systems: simple cell mapping (SCM), and generalized cell
mapping (GCM). The cell mapping methods have been applied to optimal con-
trol problems of deterministic and stochastic dynamic systems [7,9, 14]. Recently,
the SCM method has been applied to multi-objective optimization [6]. For more
discussions on cell mapping methods, the reader is referred to [§].

3.1 Generalized cell mapping

While the SCM offers an effective approach to investigate the global properties
of a dynamical system, for problems with complicated characteristics, we need
a more sophisticated algorithm. One way is to incorporate more information
on dynamics of the system into the cell mapping — which is done in the GCM
method. In GCM, a cell z is allowed to have several image cells, being the
successors of z. Each of the image cells is assigned a fraction of the total transition
probability, which is called the transition probability with respect to z.

The transition probabilities can be grouped into a transition probability ma-
trix P of order V. x N,, where N, is the total number of cells. Then the evolution
of the system is completely described by

p(n+1) = P-p(n), (1)

where p is a probability vector of dimension N, that represents the probability
function of the state. This generalized cell mapping formulation leads to absorb-
ing Markov chains [13].

In the following, we introduce some concepts that are useful to our work.

Absorbing Markov chain A Markov chain is absorbing if it has at least one
absorbing state, and it is possible to go to an absorbing state from every state
(not necessarily in one step).



Classification of cells Two types of cells can be distinguished:

A periodic cell i is a cell that is visited infinitely often once it has been visited.
In our work, we focus on periodic cells of period 1, i.e., P;; = 1. This kind of
cells correspond to the local optima candidates.

A transient cell is by definition a cell that is not periodic. For absorbing
Markov chain, the system will leave the transient cells with probability one and
will settle on an absorbing (periodic) cell.

Canonical form (cf) Consider an arbitrary absorbing Markov chain. Renumber
the states so that the transient states come first. If there are r absorbing states
and ¢ transient states (N. = r + t), the transition matrix has the following

canonical form:
10
r=(ro):

where @) is a t by ¢t matrix, R is a nonzero ¢t by r matrix, 0 is an r by ¢ zero
matrix, and [ is the r by r identity matrix. Matrix @) gathers the probabilities of
transitioning from some transient state to another whereas matrix R describes
the probability of transitioning from some transient state to some absorbing
state.

Fundamental matriz (fm) For an absorbing Markov chain the matrix I — ) has
an inverse N = (I — Q)~*. The (i, j)-entry n;; of the matrix N is the expected
number of times the chain is in state s;, given that it starts in state s;. The
initial state is counted if ¢ = j. The matrix fm = I+ ;- Q" is called the
fundamental matriz (fm) of the Markov chain and holds the equation fm = N.

Absorbing probability This is defined as the probability of being absorbed in the
absorbing state j when starting from transient state ¢, which is the (i, j)-entry
of the matrix B = NR. In terms of cell mapping, the set of all B;; # 0 for
i € [1,...,t] is called the basin of attraction of state j, and an absorbing cell
within that basin is called attractor.

3.2 Adaptation to Exploratory Landscape Analysis

Generalized cell mapping In the following, we assume the problem is bounded by
box constraints (Ib and ub), which constitutes our domain Q = {(z1,...,z,)T €
R™ : 1b; < x; < wb;, i = 1,...,n}. Now, we can divide each interval in N;
sections of size h; = (Ib; — ub;)/N;. By doing this, we get a finite subdivision of
the domain, where each of these elements are called regular cells. The number
of regular cells is noted by V. and we label the set of regular cells with positive
integers, 1,2,..., N.. Also, without loss of generality, we will solely consider
minimization problems.

One of the drawbacks of GCM is that in the general case, it needs more
function evaluations per cell than SCM in order to find the global properties of
a dynamical system. However, in the case of optimization, we can use a suitable



Algorithm 1 Construction of GCM arguments for single objective optimization

Require: f: Objective function, s: Set of cells

Ensure: cf, fm
Compute the set be; = {s;|f(s;) < f(s:) for all s; € Ne(si)}
Compute the set pg; = {s;|f(s;) = f(s;) for all s; € Ne(s;)}
Compute the probability p;; to go from s; to s;

[bei|

(f(si) = f(s5)) - <k§_:1 f(si) — f(u)) , if 55 € bei

Ipgi| " ,if be; = 0 and s; € pg;
0 , otherwise

Pij =

Compute canonical form of p, cf = {; OQ}

Compute fundamental matrix of ¢f, fm =N = (I —Q)™*"

representative objective value f(z) for each cell z, and then incorporate more
information by using the comparison relationship on the set of function values.

Algorithm 1 shows the key elements to compute the characteristics needed to
determine the features described within this section. For each cell z, we compare
f(z) to the objective values of its neighbors N,(z). Next, we assign a probability,
proportional to their function values, to pass into those cells. If there is no better
neighbor cell, equal transition probabilities are assigned to the neighbor cells with
equal function values. Worse neighbor cells always get transition probability O.

A key element of Algorithm 1 is the method of choosing a representative
value for f(s;). In this work, we have chosen the following approaches, based on
the available sample points per cell:

— min_appr: we select the point with the minimum objective value

— avg_appr: we compute the mean of all objective function values

— near_appr: we select the function value of the point closest to the center of
the cell, even if that point is not in the cell

Please note that in case there are no points in a given cell, only the third approach
is computable, whereas the other two would simply fail for these cells.

Features We now present the features that were used in order to characterize the
structure of an unknown fitness landscape. In the following, we will call these
the canonical GCM features. For each of the three approaches (min, average,
closest), we consider the following features:

— Ratio of uncertain cells (uncert_ratio): is defined as the proportion of cells
that lead to different attractors, i.e., the number of non zero entries (nnz) in
matrix B at row ¢ which are bigger than 1.

t

) 1
uncert_ratio = N Z; Linnz(Bi ) >1]
im



— Probability to find the best cell (prob_best): the sum of the probabilities of
being absorbed by the best cell divided by the total number of cells,

t
1
prob_best = ~ Z B; j,
¢ =1

where j is the absorbing cell with the best function evaluation found.

— Basin size (bs): aggregations (standard deviation, minimum, mean and max-
imum) of the different basin sizes (i.e., the different colored areas in the GCM
grids, cf. fig. 2 and 3).

— Number of attractors (attr): number of attractors (black boxes) within the
grid.

Sometimes, we found considerable differences between the min_appr and
avg_appr approach. In order to study this, we consider the following three fea-
tures:

— Common periodic cells (common.pcells): number of common periodic cells
between the approaches. Let pcellq,y and pcellp,in be the periodic cells of
the avg_appr and min_appr approaches respectively, then

common.pcells = ’pcellavg ﬂpcellmm .

— Common transient cells (common.tcells): number of common transient cells
between approaches. Let tcellq,g and tcellyi, be the transient cells of the
avg_appr and min_appr approaches respectively, then

common.tcells =

teellgug ﬂ teellmin! -

— Percentage of different cells (common.dcells): the percentage of cells which
change their roles (absorbing and transient) from one approach to the other
one.

1
common.dcells =1 — ﬁ(common.pcells + common.tcells)

3.3 Examples

In the following, we present two examples using the GCM approach on a 10 x 10
grid on functions, taken from the BBOB benchmark suite [10]. We employ two
approaches for choosing the representative objective function value of each cell:
the minimum of each cell (min_appr) and the average (avg_appr) of the function
evaluations.

In all figures, dark gray cells represent an attractor, light gray cells are cells
that belong to more than one basin of attraction. All other colors refer to a
different basin of attraction, and the arrows represent the mappings from one
cell to another.
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Fig. 2: Rastrigin (BBOB-ID 3) with GCM approach
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(a) graph (b) min_appr (c) avg-appr

Fig. 3: Rosenbrock (BBOB-ID 8) with GCM approach

For the Rosenbrock function (fig. 3), both approaches show different char-
acteristics. We can observe that the numbers and locations of attractors are
different as well as the sizes of the basins of attraction. In the min_appr ap-
proach, the parabolic shaped flat valley is reflected by the u-shaped locations
of the attractors. For the Rastrigin problem (fig. 2), the avg_appr reveals the
underlying global structure whereas the min_appr provides the main basin of
attraction. For the simple, unimodal sphere problem (not shown here), both
approaches look like the avg_appr of the Rastrigin problem.

3.4 Additional Cell Based Features

Taking the canonical GCM features in section 3.2 into account, one may look
for even more features that use the overall idea of GCM, namely discretization.
From [20], we know that the most important high-level ELA features for the par-
tition of the 24 BBOB problems into different groups are multimodality, variable
scaling, and global structure. It appears difficult to recognize the variable scal-
ing (the deformation of basins due to extreme gradient differences in orthogonal
directions) with only a relatively small and evenly distributed sample at hand,
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Fig.4: Schematic view of the gradient homogeneity features: for every point, the
vector to the nearest point is determined (gray) and normalized so that it points
to the better point (black). All black vectors are added (green) and the length
of the resulting vector is compared to the added length of all vectors (right).

because it would be necessary to place multiple points in close vicinity to their
neighbors for estimating gradients in different directions.

However, the discretization of a sample into a number of cells, with several
points in each cell, opens up possibilities to measure global structure and mul-
timodality. Note that all features we suggest in this section, except for the last
group (convezity), are independent of the search space dimensionality. The only
precondition to computing them is that we have on average more than one point
in each cell. The reason for the independence is that interactions between dif-
ferent cells are ignored, we focus on the cell contents and aggregate the values
computed per cell over all cells. The features defined in section 3.2 may also be
transferable to higher dimensions, but this would not be trivial. In the following,
we discuss the obtained features in groups that each follow a different concept.

— Gradient homogeneity (gradhomo): Fig. 4 visualizes the general idea. For
every point within a cell’s sample, we find the nearest neighbor and compute
the individual, normalized difference vector, which is always rotated so that
it is pointing to the worse point. Then, we compute the length of the vector
sum of the individual vectors amd divide it by the maximal possible vector
length (equals the number of points due to normalization). In the figure,
we obtain a value in the range of 0.5, which reflects well that there is a
trend for better points towards the bottom of the cell, but there is also
some multimodality. For completely randomly distributed objective values,
the fraction should be around 0 (vectors pointing in all directions), for a
strong trend the values should approach 1.0 (all vectors point into the same
direction). This is conceptually close to simple step-size adaptation heuristics
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Fig.5: The length of the vectors from the center to the best and worst value
within a cell, as well as the angle between those vectors summarize the direction
of the landscape (left). Comparing three (horizontally, vertically or diagonally)
neighbouring cells allows to draw conclusions on the local convexity (right).

for the CMA-ES as discussed in [12]. From the individual values for each cell,
we obtain two features by computing the mean and the standard deviation
over all cells. Note that we ignore vector direction differences between cells,
only the homogeneity within each cell is taken into account. Simple unimodal
functions shall thus generate very high mean values.

— angle, dist_best and dist_worst: Motivated from the previous feature, the
location of the best and worst values within the cell might return some insight
of the landscape (cf. fig. 5). If they lie in opposite directions it indicates a
trend within the cell. In that case the angle between the vectors from cell
center to worst value and cell center to best value would be close to 180°.
Two features are obtained by aggregating the angles of all cells from the
grid using the mean and the standard deviation. Furthermore, the standard
deviations in the lengths of the two vectors are used as additional features. In
case of simple functions as the sphere function, the variation should be low
as the majority of the cells have similar distances, because they usually lie
close to the borders of the cells. In very multimodal functions, the variation
should be high as cells with local optima result in contrary distances (short
distances of the best values and long distances of the worst values) compared
to cells without any local optima.

— fun_ratio: Using the best and worst values provides further information. So
far, the features only used the location within the decision space, but their
function values were disregarded. Using them, two more features can be
obtained. We compute the mean and standard deviation of the distances be-
tween the best and worst function values within a cell, scaled by the distance
of best and worst function value within the entire grid.

— convex_weak, conver_strong, concave_weak and concave_strong: These four
features focus on the convexity of the functions’ landscape. For any three (in



a line) neighboring cells, the observations, which are located closest to the cell
centers (z1, x2 and z3), should also be more or less in a line. A function is said
to be (weak) convex, if f(a-x1+(1—a)-x3) > a- f(z1)+(1—a)- f(x3) for o €
(0,1). Assuming that xo lies approximately in the middle of z; and z3, i.e.,
a = 0.5, the function is convex if f(x2) > 0.5-(f(z1) + f(x3)). Furthermore,
it is strong convex, if f(z2) > max{f(x1), f(x3)}. The concavity can be
derived analogously (cf. fig. 5). Based on that approach, each of the four
features can be derived by computing its ratio over all possible combinations
of three (either horizontally, vertically or diagonally) neighboring cells within
the grid.

4 Experimental Analysis

Our overall goal is to identify the features that enable predicting the high-level
properties of an unknown problem in order to select a matching optimization
algorithm. In the ideal case, we would aim at a diverse set of decision space di-
mensions so that we obtain a universally valid classifier. However, the canonical
GCM features of section 3.2 can only be computed for 2D problems without a
sophisticated redesign of cell location and neighborhoods. We therefore restrict
this first analysis to 2D. Although we assume that this setting should be easier
than 5D or 10D as attempted on the 24 BBOB functions in [17], we currently
have no comparison data available as in that work, the easier case of leave-one-
instance-out cross-validation was considered. Thus, our comparison will be a
relative one between the standard ELA features, the whole set of new features
of section 3.2 and 3.4, and all of these combined. We employ feature forward
selection to find well-performing, but small feature sets for each feature group.
We aim at detecting for which high-level features (as multimodality) the new fea-
tures actually provide a considerable advantage. The experiments were run using
MATLAB [16] (canonical GCM features) and R [26] (additional GCM features), for
resampling and feature selection the R package mlr [5] was employed.

4.1 Experimental Setup

A sample of 1000 evaluations, randomly distributed over 10x 10 = 100 cells in 2D
was employed for all considered problems. This is a relatively small number, but
still larger than the number of initial samples used, e.g., in most EAs. However,
for difficult multimodal problems, 1000 is small in comparison to the number of
function evaluations necessary to solve them. Additionally, the surplus from the
setup of a start population could be used for the initialization of restarts so that
not too many evaluations are wasted.

The experiments are based on the 24 BBOB functions, for each one we select
10 function instances and perform 10 statistical replications. The features were
averaged over the replications, providing a reduction of the variance among the
stochastic features. Thus, the setup consists of a total of 240 instances. The 50
low-level ELA features, introduced in [19] were reduced to 22, as the feature
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Fig. 6: Nested Resampling strategy for feature selection, inspired by [4].

groups belonging to local search, convexity and curvature were discarded due to
their need for additional function evaluations. In addition to those 22 ELA fea-
tures, 44 GCM features were used: two common cells features, three approaches
covering ten features each (cf. section 3.2), and the additional cell based features
(cf. section 3.4). Each high-level property will be predicted by a random forest
classifier (using default settings, i.e., 500 trees [11]). Missing values among any
of those 66 features were imputed with a value twice as high as the highest non-
missing value within that feature, which is a reasonable and standard imputation
technique for tree-based methods.

The model validation [4] is done using a nested resampling strategy as vi-
sualized in fig. 6, which is a standard evaluation approach in machine learning
for feature selection scenarios as ours. In order to generate a realistic scenario,
the functions were blocked for the modeling, i.e., all instances that belong to
the same BBOB function were used either for training or testing. This way, the
data can be split up into a maximum of 24 blocks — one per function. Both,
the inner and outer loops, use a leave-one-function-out (LOFO) cross-validation
(CV). Thus, the outer loop partitions the data into 24 blocks, each one consist-
ing of one BBOB function (10 instances, colored white in fig. 6) in the test data
and the remaining 23 functions (230 instances, dark gray) in the corresponding
model selection set. On each of the model selection sets, forward selection is
used for selecting the best feature sets. To evaluate a potential feature set, the
random forest performance on this feature set is calculated using a LOFO CV
(in the inner loop) on the 230 instances of the model selection set. When the fea-
ture forward selection has terminated, a random forest is finally trained on the
whole model selection set with the selected feature set and its misclassification
error (MCE) is measured on the corresponding test data. Thus, the resampling
strategy returns 24 unbiased performance values and feature sets (one per fold
of the outer loop).

It is important to understand that blocking the functions and using the
nested resampling approach leads to a more realistic estimation of the MCE as



Function multim. gl.-struc. separ. scaling homog. basins gl.-loc.

1: Sphere none none high  none high none none
2: Ellipsoidal separable none none high  high high none none
3: Rastrigin separable high strong high  low high low yes
4: Biiche-Rastrigin high strong high  low high med. yes
5: Linear Slope none none high  none high none none
6: Attractive Sector none none none low med. none none
7: Step Ellipsoidal none none none low high none none
8: Rosenbrock low none none none med. low yes
9: Rosenbrock rotated low none none none med. low yes
10: Ellipsoidal high conditioned none none none high high none none
11: Discus none none none high high none none
12: Bent Cigar none none none high high none none
13: Sharp Ridge none none none low med. none none
14: Different Powers none none none low med. none none
15: Rastrigin multimodal high strong none low high low yes
16: Weierstrass high med. none med. high med. yes
17: Schaffer F7 high med. none low med. med. yes
18: Schaffer F7 moderately ill-cond. high med. none high med. med. yes
19: Griewank-Rosenbrock high strong none none high low yes
20: Schwefel low none none none high low yes
21: Gallagher 101 Peaks low none none med. high med. yes
22: Gallagher 21 Peaks low none none med. high med. yes
23: Katsuura high none none none high low yes
24: Lunacek bi-Rastrigin high none none low high low yes

Table 1: Classification of the BBOB functions based on their properties (maulti-
modality, global structure, separability, variable scaling, homogeneity, basin sizes,
global-to-local). Predefined groups are separated by horizontal lines and changes
to previous versions are colored red.

this approach avoids overfitting to the training data. The approach as a whole
is different from the one used in [17] and should lead to a less optimistic, but
more realistic classification quality assessment.

In order to handle very small classes, which lead to problems during (blocked)
cross-validation, some classes within the properties multimodality (low and me-
dium), global structure (deceptive, weak and none) and global-to-local (low,
medium and high) were merged. The property plateau was removed completely
as it was a 2-class problem, with one class consisting of only one observation.
All used properties are shown in table 1.

4.2 Results and Discussion

Comparing the three performance values (one per feature group, i.e., ELA, GCM
and their combination) for each of the seven high-level properties shows, that the
GCM features improve the ELA features in five of the seven categories. Table 2
reveals that especially the properties global structure, homogeneity and multi-
modality benefit from the addition of the GCM features as the corresponding
mean misclassification errors (MMCEs), i.e., the mean over the MCEs of the
24 folds, were reduced by 10-20%. As the BBOB set was created in a way that



property Median Mean
all ELA GCM| all ELA GCM
Basin Size 0.40 0.20 0.35 | 0.47 0.31 0.47
Global to Local |0.00 0.00 0.00 |[0.14 0.16 0.19
Global Structure |0.00 0.10 0.00 |0.18 0.34 0.21
Homogeneity 0.00 0.35 0.20 [|0.28 0.39 0.34
Multimodality 0.00 0.35 0.00 [0.15 0.36 0.20
Separability 0.00 0.00 0.00 (0.17 0.20 0.24
Variable Scaling | 0.25 0.00 0.60 | 0.39 0.28 0.53
Table 2: Comparison of the MCEs, aggregated using the median and mean over
the 24 folds of the outer LOFO CV (best performances written in bold type).
Based on a Wilcoxon signed-rank test, the differences between all features and
the ELA features were significant for the properties global structure and multi-
modality (w.r.t. significance niveau 10%). Also, there were significant differences
between ELA and GCM for multimodality and variable scaling.

Misclassification Error per Property
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Fig. 7: Boxplots of MCEs per property and feature subset. Each boxplot is based
on 24 performance values, obtained during the model evaluation. The red dia-
monds indicate the mean of each sample, i.e., the MMCE.

each function of that set covers different aspects, the variance within the mis-
classification rates is quite high. However, using a Wilcoxon ranked-sum test, it
could be shown that the improvements in global structure and multimodality are
statistically significant w.r.t. a significance niveau of 10%, which is remarkable
considering the few performance values. Given that none of the GCM features
explicitly aims at explaining properties like variable scaling, it is very reasonable
that the new features were not able to improve the performance of this prop-
erty. Instead, the performance decreased significantly, probably due to adding
redundant features.
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Fig.8: The figures above show the selected features per fold within the model
validation. All the illustrated cases reveal major differences between the feature

groups. The color indicates whether the feature was chosen at least once (black),

in at least 25% (orange), or in at least 50% (red) of the folds.



It is also noteworthy that the MMCE of four properties is below 20%, which
is good w.r.t. the fact that a very strict and realistic validation method (nested
resampling with leave-one-function-out cross-validations) was applied.

As mentioned before, each BBOB problem describes a different problem and
thus, their characteristics are very diverse. Hence, it is reasonable to compare all
performances, e.g., using boxplots (cf. fig. 7), instead of comparing aggregated
measurements such as median or mean. Comparing the performances over all 24
folds also reveals that the MCEs are skewed positively, i.e., in the majority of
iterations the models are very good and therefore fail only in a few iterations.

Furthermore, one might be interested in the selected features. Due to the
nested resampling strategy, 24 (different) feature sets exist, which cannot be ag-
gregated. Instead, it is more reasonable to look at the importance of the selected
features, e.g., by analyzing how often each feature was selected. Fig. 8 shows the
importance plot for the four cases in which ELA differed strongly from the other
feature sets. In matters of global structure, the angle and gradient homogeneity
features were selected in each of the 24 subsets and therefore they seem to be
the features which mainly describe this property. Also, both of these features
are, combined with two meta model features (ELA) and another GCM feature,
important for explaining the homogeneity. Adding those two features towards
some meta model and levelset features also leads to a major improvement in
describing the multimodality of a function. However, in case of wvariable scaling
the ELA features, especially three features from the meta model group, provide
already sufficient information, which deteriorated by the perturbation of the
significantly worse GCM features.

5 Conclusions and Outlook

We have approached the extension of the standard ELA feature set from the
perspective of discretization, namely by using general cell mapping (GCM) prop-
erties as features in order to better predict the high-level properties as multi-
modality and homogeneity. Furthermore, we have extended the canonical GCM
features by a set of newly designed features that use only the assignment of
observations (search points) to cells and are therefore (with exception of the
convexity features) completely independent of cell location and neighborhood,
and thus of the number of dimensions. Whereas it would be nontrivial to extend
the canonical GCM features to more than 2D, this requires no change other than
the redefinition of cells for the additional features of section 3.4.

For the aforementioned reasons, the experimental analysis focused on 2D with
a relatively small sample of 1000 points. The results show that the new features
are especially valuable for predicting the high-level properties multimodality and
global structure, which are, according to the original ELA experiments, most
important for selecting a proper algorithm for a difficult black-box problem.
Especially the new (additional) angle and gradient homogeneity features are
chosen regularly by the feature selection, whereas the canonical GCM features
play only a minor role.



This is not only a very good improvement but also reveals how other success-
ful features should be created. As the ELA approach can easily integrate new
features, there are endless possibilities for designing features in order to improve
the classification even for the 2 (of 7) high-level properties that have not been
improved. Additionally, the feature selection process itself shall be investigated
and improved further (if feature selection would be perfect, i.e., if finding the
best subset of features would be guaranteed, adding more features could never
result in deterioration). Simple forward selection is obviously not ideal, but total
enumeration is also not possible due to the combinatorial explosion. One shall try
more clever heuristics or meta-heuristics such as EAs for further improvement.
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