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Abstract In recent years an increasing amount of so called local classification meth-
ods has been developed. Local approaches to classification are not new. Well-known
examples are the k nearest neighbors method and classification trees (e. g. CART).
However, the term ‘local’ is usually used without further explanation of its partic-
ular meaning, we neither know which properties local methods have nor for which
types of classification problems they may be beneficial. In order to address these
problems we conduct a benchmark study. Based on 26 artificial and real-world data
sets selected local and global classification methods are analyzed in terms of the
bias-variance decomposition of the misclassification rate. The results support our
intuition that local methods exhibit lower bias compared to global counterparts. This
reduction comes at the price of an only slightly increased variance such that the error
rate in total may be improved.

1 Introduction

Lately the amount of literature on local approaches to classification is increasing.
The probably best-known example is the k nearest neighbors method. Many more lo-
cal approaches have been developed, most of them can be considered localized ver-
sions of standard classification techniques such as LDA, logistic regression, naı̈ve
Bayes, SVMs, neural networks, boosting etc. The main idea of local classification
methods is as follows: Since it is often difficult to find a single classification rule
that is suitable for the whole population, rather concentrate on subsets of the pop-
ulation and calculate several individual rules that are only valid for single subsets.
Two questions immediately arise: What is the effect of this localization and in which
situations are local methods especially appropriate? Many authors when proposing
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a new local classification method just demonstrate superior performance over stan-
dard methods on selected data sets. To our knowledge there are only few theoretical
results regarding the performance of local methods and no extensive studies that
compare several types of local methods across many data sets. A useful concept
to gain deeper insight into the behavior of learning algorithms is the bias-variance
decomposition of prediction error. It was originally introduced for quadratic loss
functions, but generalizations to the misclassification rate have been developed. In
a benchmark study on real-world and synthetic data we assess the bias-variance de-
composition of the misclassification rate for different types of local methods as well
as global methods. For a start in Sect. 2 a short introduction to local approaches to
classification is given and different types of local methods are described. The bias-
variance decomposition of the misclassification rate and its specific properties are
explained in Sect. 3. The benchmark study and the results are presented in Sect. 4.
Finally, in Sect. 5 a summary and an outlook to future work are given.

2 Local Approaches to Classification

Due to space limitations we can only give a short introduction. We do not go into
details here, but rather point to references on certain topics. In classification it is
assumed that each object ω in the population Ω belongs to one and only one class
y =Y (ω)∈Y , with Y denoting the set of class labels. Additionally, on each object
measurements x = X(ω) ∈X are taken. Both, X and Y , are assumed to be ran-
dom variables. The aim is to find a classification rule or classifier D : X → Y that
based on the measurements predicts the class labels. The set X is usually called
predictor space and often X ⊂ Rd . A local classifier is specialized on subsets of
the population Ω . A local classification method induces one or more local classifiers
and aggregates them if necessary. According to which subsets of the population are
addressed several types of local approaches can be distinguished:

Observation-Specific Methods For each object in the population an individual clas-
sification rule is built based on the training observations near the trial point x. The
best-known example is kNN. But in principle every classification method can be
localized this way, for example a localized form of LDA is described in Czogiel
et al (2007). While for kNN locally constant functions are fitted to the data, in
case of LLDA locally linear functions are used. A review paper concerned with
observation-specific methods is Atkeson et al (1997).

Partitioning Methods These methods partition the predictor space X . Examples
are CART, mixture-based approaches like mixture discriminant analysis (MDA,
Hastie and Tibshirani, 1996) and other multiple prototype methods like learning
vector quantization (LVQ, Hastie et al, 2009). Strictly speaking kNN belongs to
both groups because it generates a Voronoi tessellation of X .

There are some more local approaches like multiclass to binary strategies (All-
wein et al, 2000) and discriminant-adaptive approaches (Hand and Vinciotti, 2003)
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that are beyond the scope of this paper. Since in local classification model assump-
tions need only be valid for subsets of the population instead of the whole population
they are relaxed. For this reason localized methods exhibit more flexibility than their
global counterparts and are expected to give good results in case of irregular class
boundaries. Localization is only one way to obtain flexible classifiers. Other global
ways are e. g. using polynomials of higher degrees and/or kernel methods.

3 Bias-Variance Decomposition of the Misclassification Rate

The bias-variance decomposition of prediction error was originally introduced for
quadratic loss. The two main concerns when generalizing it beyond quadratic loss
are finding reasonable definitions of bias and variance on the one hand and deriving
the decomposition of prediction error on the other hand (e. g. James, 2003).

Definitions of Noise, Bias and Variance Let PX ,Y denote the joint distribution of X
and Y and let P(Y = y|x) be the class posterior probabilities. In classification noise
at a fixed trial point x is the irreducible or Bayes error

Var(Y |x) = EY
[
L01

(
Y,S(Y |x)

)
|x
]
= 1−max

y
P(Y = y|x), where (1)

S(Y |x) = argmin
y

EY
[
L01(Y,y)|x

]
= argmax

y
P(Y = y|x) (2)

is the Bayes prediction at x and L01 : Y ×Y → {0,1} denotes the zero-one loss
function. Let Ŷ = D(x) denote the prediction at x. Since D is calculated based on
training data that result from a random draw from (X ,Y ) according to PX ,Y , Ŷ is
not fixed. Bias and variance are defined as

bias(Ŷ |x) = L01
(
S(Y |x),S(Ŷ |x)

)
= I

(
S(Y |x) 6= S(Ŷ |x)

)
, (3)

Var(Ŷ |x) = EŶ

[
L01

(
Ŷ ,S(Ŷ |x)

)
|x
]
= 1−max

y
P(Ŷ = y|x), where (4)

S(Ŷ |x) = argmin
y

EŶ

[
L01(Ŷ ,y)|x

]
= argmax

y
P(Ŷ = y|x) (5)

is usually called the main prediction and I is the indicator function. Bias measures
the systematic deviation of the main prediction from S(Y |x), while Var(Ŷ |x) indi-
cates the random variation of Ŷ around the main prediction. S is an operator that
reveals the systematic parts of Y and Ŷ . The definitions given here are natural gen-
eralizations of those in the quadratic case, i. e. if the quadratic loss is used instead
of L01 they reduce to the standard definitions of noise, squared bias and variance.

Decomposition of the Prediction Error In case of quadratic loss the prediction error
can be decomposed into the sum of noise, bias and variance and thus both, high bias
and high variance, are detrimental to prediction accuracy. In case of zero-one loss
the role of variance is completely different. In James (2003) it is shown that in the
two-class case the misclassification rate can be decomposed as follows
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EY,Ŷ

[
L01(Y,Ŷ )|x

]
= Var(Y |x)+bias(Ŷ |x)+Var(Ŷ |x)−2Var(Y |x)bias(Ŷ |x)

−2Var(Y |x)Var(Ŷ |x)−2bias(Ŷ |x)Var(Ŷ |x)+4Var(Y |x)bias(Ŷ |x)Var(Ŷ |x). (6)

In contrast to the quadratic case the decomposition additionally contains interac-
tions. The negative interaction effect of bias and variance indicates that variance
corrects the prediction in case of bias. If the number of classes is larger than two
this correction does not occur for sure, but with a certain probability, which makes
the decomposition even more complicated.

Systematic and Variance Effects In order to obtain a simpler decomposition James
(2003) distinguishes between bias and variance as measures of systematic deviance
and random variation on the one hand and the effects of bias and variance on the
prediction error on the other hand. He defines systematic and variance effects as

SE(Y,Ŷ |x) = EY
[
L01

(
Y,S(Ŷ |x)

)
−L01

(
Y,S(Y |x)

)
|x
]
, (7)

VE(Y,Ŷ |x) = EY,Ŷ

[
L01(Y,Ŷ )−L01

(
Y,S(Ŷ |x)

)
|x
]
. (8)

The systematic effect is the change in prediction error if instead of the Bayes pre-
diction S(Y |x) the main prediction S(Ŷ |x) is used. The variance effect measures the
change in prediction error due to random variation of Ŷ around the main predic-
tion. While SE(Y,Ŷ |x) ≥ 0 the variance effect for the reasons explained above can
also take negative values. Under squared loss bias and variance coincide with their
respective effects. Generally, an estimator with zero bias also has zero systematic
effect and an estimator with zero variance has zero variance effect. With system-
atic and variance effects an additive decomposition of the misclassification rate is
obtained as follows

EY,Ŷ

[
L01(Y,Ŷ )|x

]
= Var(Y |x)+SE(Y,Ŷ |x)+VE(Y,Ŷ |x). (9)

4 Benchmark Study

The aim of our study is to get more insight into the properties of local methods and
the effect of localization. As explained in Sect. 2 we assume that local methods in
general exhibit rather low bias and decreased bias compared to global counterparts.
This reduction probably comes at the price of an increased variance. As explained
in Sect. 3 variance needs not be detrimental, but in conjunction with low bias it is
likely to be. Questions of interest are: Is the error rate in total increased or decreased
and is bias or variance the main contributor to prediction error when using local
methods? Moreover, it would be useful to know if there are differences between
distinct types of local methods. We expect this since, for example, CART is known
for high variance, whereas kNN is reported as stable by Breiman (1996). Finally,
since we justify our assumption of bias reduction with the increased flexibility of
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Table 1 Characteristics of the 26 data sets used in the benchmark study: Number of observations,
number of classes, dimensionality, number of numeric and number of categorical predictors

Data Set #Obs #Class Dim #Num #Categ Data Set #Obs #Class Dim #Num #Categ

breastcancer 683 2 9 0 9 circle 1000 2 4 4 0
car 1728 4 6 0 6 cuboids 1002 4 3 3 0
crabs 200 2 5 5 0 hvdata 1000 2 6 6 0
credit-g 1000 2 20 7 13 mixture 200 2 2 2 0
crystal 2746 3 37 37 0 orange 1000 2 10 10 0
encoded 794 2 6 6 0 ringnorm 1000 2 4 4 0
glass 214 6 9 9 0 spirals 1000 2 2 2 0
ionosphere 351 2 34 34 0 subclasses 300 2 2 2 0
pima 768 2 8 8 0 subclasses2 990 3 5 5 0
SAheart 462 2 9 8 1 threenorm 1000 2 4 4 0
sonar 208 2 60 60 0 twonorm 1000 2 4 4 0
soybean 562 15 35 0 35 waveform 1000 3 21 21 0
vowel 990 11 9 9 0 xor 1000 8 4 4 0

local methods, we would like to know if there are differences between local methods
and global approaches of similar flexibility.

Data Sets We consider 26 data sets, both artificial and real-world data. Most data
sets are taken from the UCI repository (Frank and Asuncion, 2010) and the mlbench
R-package (Leisch and Dimitriadou, 2010). The threenorm, twonorm and waveform
data were used in Breiman (1996). The crystal and encoded data sets are described
in more detail in Szepannek et al (2008), the mixture data are taken from Bishop
(2006). The hvdata set is an artificial data set described in Hand and Vinciotti (2003).
The orange and South-African-heart-disease (SAheart) data are taken from Hastie
et al (2009) and the crabs data are available in the MASS R-package (Venables and
Ripley, 2002). In Table 1 a survey of the data sets used in the study is given. On the
left hand the real-world and on the right hand the artificial data sets are shown. The
crabs and wine data sets as well as the hvdata and twonorm data sets pose relatively
easy problems since the decision boundary is linear. The circle, orange, ringnorm,
subclasses and threenorm data sets are quadratic and the xor and subclasses2 data
sets are more complex classification problems.

Classification Methods We consider ten classification methods, three global and
seven local methods.

• Global methods: We apply two linear methods, LDA and multinomial regression
(MNR), and as a more flexible method a SVM with polynomial kernel (poly
SVM). The degree of the polynomial is tuned in the range of 1 to 3.

• Partitioning methods: We consider CART, learning vector quantization (LVQ1)
and mixture discriminant analysis (MDA, Hastie and Tibshirani, 1996).

• Observation-specific methods: We use kNN, localized LDA (LLDA, Czogiel
et al, 2007) and SVMs with RBF kernel (RBF SVM).
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Fig. 1 Left: Boxplot of the error rates on the 26 data sets. Right: Consensus ranking of the classi-
fication methods

• Moreover, we consider random forests (RF), which can be regarded as local clas-
sification method in conjunction with an ensemble method. Since several classi-
fication trees are combined RF normally exhibits lower variance than CART.

Measuring Noise, Bias and Variance In case of artificial data the noise level is usu-
ally known. When dealing with real-world data noise can be estimated by means of
a consistent classifier. We follow the proposition of James (2003) and employ the
3NN method where the neighbors are weighted by a Gaussian kernel. In order to
calculate bias and variance we need to estimate the distribution of Ŷ . For this pur-
pose we use a nested resampling strategy. In the outer loop we employ subsampling
(4/5 splits with 100 repetitions). The subsample is used for training while based on
the remaining data error, bias, variance and their effects are estimated. In the inner
loop we use 5-fold cross-validation for parameter tuning which is required for all
employed classification methods except LDA and MNR. A more detailed descrip-
tion of how bias, variance etc. can be estimated can be found in James (2003). All
calculations were carried out in R 2.11.1 (R Development Core Team, 2009) using
the mlr R-package (Bischl, 2010).

Results While space limitations preclude a full description of the results, some of
the main observations are reported here. First, we assess if there are significant per-
formance differences between the classification methods. In Fig. 1 for each classifi-
cation method a boxplot of the misclassification rates on the 26 data sets is shown.
Moreover, a ranking of the methods based on their performance is obtained. For
this purpose for each data set a linear mixed effects model is fitted to the misclas-
sification rates obtained on the individual subsamples. Then pairwise differences
between the classification methods are tested based on Tukey contrasts and thus an
order among the algorithms is established. Finally, a partial consensus ranking of
the methods over all data sets is obtained (Eugster et al, 2008). This ranking is not
unique. One of eight possible rankings is shown on the right side of Fig. 1. From
bottom to top the performance of the classification methods increases. An edge in-
dicates that the error rate of the method displayed on the lower level is significantly
smaller than that of the method above. In all eight consensus rankings RBF SVM
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Fig. 2 Left: Error rates, systematic and variance effects averaged over the 26 data sets. Right:
Variance effect versus systematic effect

and polynomial SVM show best performance. Moreover, there are no methods that
beat LLDA and MDA. Both linear methods and LVQ1 exhibit highest error rates.
Next, in order to explain the differences in error rates we consider the bias-variance
decomposition. Fig. 2 shows the average misclassification rates as well as system-
atic and variance effects over all 26 data sets. For all classification methods the
systematic effects are considerably larger than the variance effects. Differences in
error rates are mainly caused by changes in systematic effect. Both methods with
lowest error rates, polynomial and RBF SVMs, exhibit the smallest systematic ef-
fects. Their variance effects are hardly larger than that of LDA which is minimal
under all classification methods. The localized versions of LDA, LLDA and MDA,
both exhibit considerably lower systematic effects, but only slightly increased vari-
ance effects. LVQ1 and as expected CART exhibit the largest variance effects. Com-
pared to CART random forests (RF) shows a smaller average variance effect, but as
well a smaller systematic effect. In order to visualize which classification methods
show a similar behavior with respect to the bias-variance decomposition we plot
the variance effect against the systematic effect. We can recognize two clusters, one
formed by the linear methods LDA and MNR, the other one formed by highly flex-
ible methods kNN, RF as well as RBF and polynomial SVM. Neither global and
local methods nor the different types of local methods we mentioned in Sect. 2 can
be distinguished based on this plot. The reason may be that the bias-variance de-
composition only reflects the degree of flexibility of classification methods and that
the way how it is obtained, by localization or otherwise, is not relevant.

5 Summary and Outlook

In order to gain insight into the performance of local classification methods we
assessed the bias-variance decomposition of the error rate for local and global clas-
sification methods based on real-world and synthetic data. The results support our
intuition that localized approaches exhibit considerably lower bias or rather system-
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atic effect than global counterparts. Contrary to our assumptions most local methods
under consideration, except LVQ1 and CART, only have a slightly increased vari-
ance effect, the main contributors to prediction error are noise or systematic effect.
In terms of the bias-variance decomposition neither global and local methods nor
the different types of local methods could be distinguished. In the future we would
like to apply more classification methods. Some types mentioned in Sect.2 like mul-
ticlass to binary have not been included yet. Moreover, we plan to relate the results
to characteristics of different types of local classification methods. All conclusions
were drawn based on averages over the 26 data sets in the study, differences between
distinct data sets are not taken into account. In order to gain deeper insight and to
get hints in what situation which method will probably perform well it would be
useful to relate the results to characteristics of the data sets.
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