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Abstract In recent years in the fields of statistics and machine learning an
increasing amount of so called local classification methods has been developed.
Local approaches to classification are not new, but have lately become popular.
Well-known examples are the k nearest neighbors method and classification
trees. However, in most publications on this topic the term “local” is used
without further explanation of its particular meaning. Only little is known
about the properties of local methods and the types of classification problems
for which they may be beneficial. We explain the basic principles and intro-
duce the most important variants of local methods. To our knowledge there
are very few extensive studies in the literature that compare several types of
local methods and global methods across many data sets. In order to assess
their performance we conduct a benchmark study on real-world and synthetic
tasks. We cluster data sets and considered learning algorithms with regard to
the obtained performance structures and try to relate our theoretical consid-
erations and intuitions to these results. We also address some general issues
of benchmark studies and cover some pitfalls, extensions and improvements.

Keywords Local classification methods · Benchmark study · Machine
learning · Model selection

1 Introduction

Recently, there has been a lot of interest in local approaches to classifica-
tion. Their origins date back to the k nearest neighbors method (kNN) of Fix
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and Hodges (1951). Besides kNN, other local approaches such as recursive
partitioning methods (e.g., Breiman et al 1984), radial basis function (RBF)
neural networks as well as RBF support vector machines (SVMs) are widely
used. Moreover, many of the recently proposed methods are localized versions
of standard methods. Examples are localized variants of linear discriminant
analysis (Czogiel et al 2007; Sugiyama 2007), logistic regression (Hand and
Vinciotti 2003; Tutz and Binder 2005) as well as boosting (Zhang and Zhang
2008), local versions of SVMs (Segata and Blanzieri 2010a) and local neural
networks (Alpaydin and Jordan 1996). The main idea behind local methods
is as follows: Since it is often difficult to find a single classification rule that
is suitable for the whole population, rather calculate several local rules that
are only valid for certain regions of the predictor space. When predicting the
class label of an observation x the prediction is mainly determined by rules
based on local regions near x. There are various possible implementations of
this idea leading to different types of local methods.

There are several reasons why we are interested in local classification meth-
ods. First, local methods seem to be increasingly popular and many authors
claim that local methods have certain advantages, e. g., in computation time,
interpretability or performance. Another very fundamental reason lies in the
fact that new classification methods are steadily published, and a vast num-
ber of approaches is already available. In order to choose methods appropriate
to a certain classification problem a deeper understanding of the relationship
between properties of classifiers, characteristics of classification problems and
expected performance would be very helpful. In light of this, it appears to
be useful to investigate how the fact that a method is local affects its perfor-
mance. Concrete questions of interest are: How do local methods perform in
general? How do localized versions perform in comparison to the base method?
Do local methods of the same type show similar performance? Can we identify
classification problems where local methods are beneficial? Are different types
of local methods appropriate for different classification problems?

Unfortunately, it is hardly possible to answer these questions from the
available literature for several reasons. First, many authors when proposing a
new (local) classification method illustrate its usefulness only on a small num-
ber of artificial or real-world data sets and often compare it only to few other
methods – which are not necessarily the strongest competitors. Likewise, it is
seldom addressed if observed differences in performance are actually signifi-
cant or an artifact of the random nature of the experiment. To our knowledge
there are no extensive studies that compare several types of local methods
across many data sets and employ significance tests. Therefore, we conduct
a benchmark study on real-world and synthetic data. We base this study on
the analysis framework of Hothorn et al (2005) and the practical extension
and implementation by Eugster et al (2008). Our goal is not, as it is often the
case in comparison studies, to establish an overall-ranking of methods, but a
differentiated analysis of the results with respect to the questions above.

The paper is organized as follows. In Sect. 2 an introduction to local ap-
proaches to classification is given and the local methods under consideration
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are described. Subsequently, the basics of benchmark analysis are reviewed
and the experimental setup is described in Sect. 3. The results of our study
are presented and discussed in Sect. 4 and finally, in Sect. 5 a summary and
an outlook to future work are given.

2 Local classification methods

2.1 Basic principles

In the literature the term “local classification method” is not clearly defined.
One of the few existing formal characterizations is by Devroye et al (1996)
who define a classification rule as k-local if it depends exclusively on the k
nearest neighbors of the test observation x. Additionally, many rather infor-
mal characterizations exist that are to some extent contradictory and give rise
to different types of local methods. For example, Hand and Vinciotti (2003)
state that a local classification rule relies mainly on the training observations
near the class boundary since this is the region where an accurate fit of the
underlying model matters most. Sugiyama (2007) proposes a modified ver-
sion of Fisher discriminant analysis that he terms local because the pairwise
similarities of training observations are taken into account when fitting the
model.

In contrast, global methods are characterized as follows: Hand and Vin-
ciotti state that here “all aspects of the data and the distributions contribute
to the estimate of goodness of fit”. Cheng et al (2010) write that “global
learning approaches attempt to build a complex model by using the global
characteristics of the data”. According to these characterizations global meth-
ods include for instance linear discriminant analysis, logistic regression and
multilayer perceptrons with the usual sigmoid activation functions.

We now describe common characteristics of local methods and later on
in Sect. 2.2 especially address the approaches we consider in our benchmark
study. From the characterizations above we can see that it is usually assumed
that in predictor space there are several local regions of interest. Terms like
distance and similarity are often used to formally define these regions. In the
examples given in the beginning of this section “local” refers either to closeness
to a trial point, closeness to the class boundary or similarity between pairs
of training observations. The latter one can be understood as a description
of the local cluster structure in the data. Usually, observation weights are
calculated from these similarities or distances that regulate the influence of
observations during the training process. This is normally done by rescaling
distances through a window function, so that observations in a local region
of interest receive higher weights. For time efficiency often window functions
with finite support are used. This results in fitting models on a subset of
the training data. In case of a k-local classification rule a rectangle window
is used. Its width equals the distance to the k-th nearest neighbor of the test
observation x. A local classification method induces one or more local classifiers
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and aggregates them if necessary. Aggregation is done in such a way that when
making predictions the local classifiers trained on local regions near the trial
point have largest influence on the prediction.

Since the terms distance and similarity are involved in local classification
we now have a closer look at the relation to distance-based approaches. These
methods “classify objects by dissimilarity between them as measured by a
distance function” (Shen 2006). Many distance-based methods work by sim-
ply assigning a trial point to “the closest class” (Clarke et al 2009, Sect. 5.2,
p. 235), but this does not necessarily result in a local approach. For example,
measuring the distance to a class by the distance to the closest training ob-
servation in this class produces the 1 nearest neighbor method which clearly
is a local method. Measuring the distance to a class by assessing the dis-
tance to its mean vector (cp. Shen 2006, Sect. 4.1, p. 72) results in a global
method, a.k.a. the minimum distance classifier, since all training observations
contribute equally to the fit. A further example is Fisher discriminant analy-
sis that Clarke et al (2009, Sect. 5.2.1, p. 236) mention as one of the earliest
distance-based classifiers. Here, the data are projected into a space with lower
dimensionality and distances to the class means in this embedding space are
used.

2.2 Local classification methods under consideration

In the following we will introduce the local classification methods we consider
in our benchmark study. Due to space limitations we cannot go into much
detail here, but we will explain the basic ideas and point to further references.
The methods are listed according to the underlying meaning of the term “lo-
cal” which we think is a natural way of presentation. The question if local
methods of the same type show similar performance is investigated in the
second part of this paper.

2.2.1 Observation-specific methods: k nearest neighbors and localized linear
discriminant analysis

Observation-specific methods or instance-based approaches are by far the best-
known type of local methods. A review paper is by Atkeson et al (1997). The
term “local” refers to the environment of a test observation. For each test
observation a local classification rule is built based on nearby training obser-
vations. In our study we consider the k nearest neighbors method (kNN, Fix
and Hodges 1951) where a test observation x is assigned the most frequent
class among the k nearest training observations. Technically speaking the pre-
dictor space is partitioned into a large number of local regions, the Voronoi
cells corresponding to the different possible sets of k nearest neighbors. For
each Voronoi cell a local classification rule is built on the k nearest training
observations. For a test observation x it is assessed in which Voronoi cell it
falls and the corresponding local classifier is used to predict the class label. In
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case of kNN the local classifiers are constant functions in the predictor vari-
ables. Generally, also more complex functions can be used. For example, Tutz
and Binder (2005) use penalized logistic regression to create local classifiers,
Blanzieri and Melgani (2006); Zhang et al (2006) propose to use support vector
machines and Kotsiantis and Pintelas (2004) describe an observation-specific
version of boosting. In our benchmark study we also consider a combination
of kNN with linear discriminant analysis proposed by Czogiel et al (2007). For
each test observation an individual linear discriminant analysis model is fitted
based on the k nearest neighbors.

2.2.2 Multiple prototype methods: Learning vector quantization and mixture
discriminant analysis

These methods represent the training data by a reduced number of prototypes.
Each prototype has a class label and normally there are multiple prototypes
per class. Usually, an object is assigned the class of its closest prototype.
That is, the predictor space is partitioned into Voronoi cells that correspond
to individual prototypes. Again, there is one local classifier per Voronoi cell
which is a constant function in x.

This group of methods is closely related to observation-specific approaches.
If every training observation is itself a prototype and x is assigned the class
of the closest prototype the 1NN method results. If the most frequent class
among the k nearest prototypes is chosen we obtain kNN. Since the num-
ber of prototypes is usually smaller than the number of training observations
prototype methods help to reduce the memory amount required by the kNN
method.

Although kNN can be regarded as a prototype method the locality concepts
behind kNN (as well as combinations of kNN with other classifiers) and the
prototype methods described in the following are different. While for kNN
‘local’ refers to closeness to the test observation for the methods mentioned
below ‘local’ relates to similarity between training observations.

For example a clustering method can be applied to each class and the
cluster centers are used as prototypes (e. g., K-means classification, Hastie
et al 2009, Sect. 13.2.1, p. 460). In our benchmark study we consider learning
vector quantization (Kohonen 1989). The LVQ1 algorithm works as follows:
First, an initial set of prototypes for every class is chosen by random sampling
from the training data. In an iterative procedure training points are sampled
one at a time. For each training point the class label of the nearest prototype is
determined. If both, the training point and the prototype, are in the same class
the prototype is moved towards the training point. Otherwise the prototype
is moved in the opposite direction. In each iteration step the learning rate
which controls how far the prototypes are moved is decreased. The procedure
is stopped when the learning rate reaches zero.

It is also possible to employ model-based clustering methods, i. e., to fit
mixture models. In our benchmark study we use mixture discriminant analy-
sis (Hastie and Tibshirani 1996). Each class conditional distribution is modeled
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by a mixture of normal distributions with different means and equal covari-
ance matrices. The mean vectors can be regarded as prototypes. For a test
observation x the class with largest posterior probability is predicted. The dis-
tribution parameters are estimated by maximizing the likelihood via the EM
algorithm.

2.2.3 Local kernel methods: RBF support vector machine

Segata and Blanzieri (2010b) mention SVMs with local kernels as an alterna-
tive to observation-specific support vector machines. Local kernels are defined
by the property that their value becomes constant when the distance between
two points tends to infinity. In contrast, the value of a global kernel can also
be influenced by observations that are far away from each other (Smits and
Jordaan 2002). A typical local kernel is the Gaussian or RBF kernel. Lin-
ear, polynomial and sigmoidal kernels are global kernels. Due to the form of
the SVM discriminant function f(x) =

∑N
n=1 βnK(x, xn) only support vec-

tors near the trial point x have an influence on the predicted label of x if K
is a local kernel. SVMs with local kernels can be regarded as a compromise
between global and observation-specific approaches. In a purely observation-
specific approach the coefficients βn are estimated individually for each trial
point x. When using local kernels the optimization problem is solved globally,
but the pairwise similarities of training observations are taken into account.

SVMs with global kernels are usually regarded as global classification meth-
ods. Although the fitted model only depends on a subset of the data (the sup-
port vectors) this is only a result of the induced sparseness by the Hinge loss
and not because any local structure is reflected. Also note that simply chang-
ing the Hinge loss to the L2 loss (least-squares SVMs) leads to a non-sparse
solution.

There is still ongoing research on the properties and on the combination of
local and global kernels in SVM classification and regression (Brailovsky et al
1999; Smits and Jordaan 2002; Zhu et al 2005; Segata and Blanzieri 2010b).
In our benchmark study we consider SVMs with polynomial kernel where the
degree of the polynomial is tuned and SVMs with Gaussian kernel.

Another possibility to localize SVMs via kernel functions is proposed by
Gönen and Alpaydin (2008) by extending the multiple kernel approach. While
in multiple kernel learning weighted sums of different kernels with constant
weights are constructed, Gönen and Alpaydin (2008) allow the weights to
depend on the location of the test observation x.

2.2.4 Recursive partitioning methods: Classification and regression trees and
random forests

These approaches partition the predictor space into a set of, normally, hyper-
rectangles and then fit a local classifier in each one. In case of classification
trees (Breiman et al 1984) the local classifiers are constant functions in x and
the hyper-rectangles are chosen such that they are as pure as possible with
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respect to the class label. Partitioning is done in a greedy, recursive manner
and purity is usually measured by the Gini index. Recently, there has been
interest in using more complex local classifiers like linear discriminant analysis
(Kim and Loh 2003), logistic regression (Landwehr et al 2005) or naive Bayes
(Seewald et al 2001). This is mainly motivated by the fact that constant fits
can lead to large and unstable trees. Zeileis et al (2008) provide a general
framework to incorporate parametric models into recursive partitioning. Here,
not the impurity, but the instability of the model parameter estimates is used
as splitting criterion. In our benchmark study we consider classification trees
(Breiman et al 1984). Moreover, we use random forests (Breiman 2001). Ran-
dom forests are bagged decision trees and were developed to reduce the high
variance of decision trees.

2.2.5 Discriminant-adaptive approaches: Localized logistic regression

Since all models we fit to the data are hardly ever correct there will be parts
of the population where the fit of a model is quite accurate and others where
it is not. As for discrimination an accurate fit is required especially near the
class boundary. Therefore, discriminant-adaptive methods give higher weight
to training observations near the class boundary in the training process. In our
benchmark study we consider a localized form of logistic regression proposed
by Hand and Vinciotti (2003). An iterative procedure is used to identify ob-
servations near the decision boundary: First, an unweighted logistic regression
model is fitted. Based on the distances between the estimated class posterior
probabilities and the threshold used for classification, observation weights can
be calculated. A weighted model is fitted by introducing these weights into the
log-likelihood. Subsequently, model fitting and calculation of weights is done
in turn until a fixed number of iterations is reached. We use a rather simple
weighting scheme. The k nearest neighbors of the decision boundary receive
weight 1 and all other training observations are given weight 0.

In the literature some more approaches concerning the selection of class
boundary patterns or border patterns are reported for example by Foody
(1999); Lyhyaoui et al (1999); Chen and Burrell (2001); Shin and Cho (2002).
In Foody (1999) for each training pattern the Mahalanobis distance to each
class center is calculated. The class with the smallest Mahalanobis distance is
the most likely class. Thus the “borderness” of an observation is measured as
the difference between the two smallest Mahalanobis distances. Shin and Cho
(2002) measure the proximity of a training point to the decision boundary in
terms of the entropy among its k nearest neighbors.

2.2.6 Concluding remarks

Model assumptions in local classification are less stringent, as they need only
be valid for subsets of the population. For this reason most of these methods
exhibit increased flexibility in comparison with their global counterparts and
are expected to give good results in case of complex problems with irregularly
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shaped class boundaries. One special situation which is addressed by some
local methods is multimodality of class conditional distributions. This is not
too unlikely to occur since many classification problems are inverse problems.
That is, for one value of the class variable there may exist multiple explanations
that correspond to very different values of the predictors. Formally, we can say
that local classification methods exhibit a lower bias, but also carry the risk of
having a higher variance. But note that localization is only one way to obtain
flexible classifiers because this effect can also be achieved by considering, e. g.,
higher order interactions of features in the model.

3 Benchmarking and experimental setup

Benchmarking experiments concern the evaluation of a set of candidate al-
gorithms for one or a number of tasks in order to assess their absolute and
relative performances. The choice of an appropriate performance measure has
to be made by the user in advance. Here, we will assume that only one main
performance criterion is of interest, but would like to point out that many
problems in machine learning could naturally be considered as multi-criteria
ones (e. g., consider trade-offs between predictive power, time to fit a model
and number of features used). Of special interest is the generation of a ranking
of these candidate algorithms w.r.t. their individual performances and some-
times the identification of the best performing algorithm(s). If pseudo-random
computer experiments are used, these performance values will be stochastic
and statistical significance tests should be employed to compare the candi-
dates. Still, many papers compare the algorithm(s) under consideration only
to few alternatives (and these are often of the same type, e. g., only variants
of neural networks) and on few data sets whose selection is never made clear.
Testing for significant differences is frequently ignored.

3.1 General framework

We employ the framework for benchmark experiments by Hothorn et al (2005)
to compare the discriminating power of different classification algorithms.
By applying a resampling strategy like bootstrapping or subsampling (Simon
2007) one independently generates training sets from a given data set, uses a
machine learning algorithm to fit models on these, predicts the out-of-bag test
samples and assesses their performance according to an appropriate measure.
This generates a finite sequence of performance values for every algorithm,
which now can be compared by standard statistical inference methodology.
We make the following choices: We use subsampling (sometimes called Monte
Carlo cross-validation) with 100 iterations and 4/5 splits to generate train-
ing and test sets. The dependence structure of ordinary cross-validation is
problematic for subsequent significance tests as shown by Nadeau and Bengio
(2003). Bootstrapping on the other hand can produce biased results if com-
bined with tuning due to its sampling with repetitions. Binder and Schumacher
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(2008) demonstrate this in an extensive study concerning boosting. Training
and test sets are equal for each data set for all learning algorithms (paired de-
sign) to reduce variance. For hyperparameter tuning we employ proper nested
resampling with 5-fold cross-validation and grid search in the inner loop. As
performance measure we only consider the misclassification error.

3.2 Classification methods

We employed eleven classification methods in our benchmark study, among
them eight local methods of four different types and three global methods.
As global methods we apply two linear methods, linear discriminant analysis
(lda) and multinomial logistic regression (mnr), and as a more flexible method
a polynomial support vector machine (p-svm) where the degree of the poly-
nomial is tuned. Moreover, we use localized logistic regression llr which is a
discriminant-adaptive method. The nearest neighbors of the decision boundary
are used for fitting the model. Their number (parameter k) is tuned. As recur-
sive partitioning methods we apply classification trees (rp) and random forests
(rf ). From the group of prototype methods we consider mixture discriminant
analysis (mda) as well as learning vector quantization (lvq1 ). In mda each class
is modeled as a mixture of subclasses whose number has to be specified. In
order to reduce tuning parameters we assume that the this number is equal for
all classes. In lvq1 each class is represented by multiple prototypes. Their total
number (size) as well as the learning rate (alpha) are tuned. From the group
of observation-specific methods we consider k nearest neighbors (knn) and lo-
calized linear discriminant analysis (llda). As local kernel method we use the
RBF support vector machine (r-svm). In llda we use the k nearest neighbors
of each trial point to fit the local lda models. The parameter k is tuned. Lo-
calized logistic regression and support vector machines can only handle binary
classification problems. For multiclass-classification the all-pairs approach is
used. Table 1 gives an overview of the employed classification methods and
their tuning parameters.

3.3 Data

In our study we consider 49 data sets, both artificial and real-world. Table 2
provides a brief overview together with basic data characteristics. By far the
most data sets are taken from the UCI machine learning repository (Frank et al
2010). Moreover, the circle, cuboids, ringnorm, twonorm, threenorm, spirals,
waveform and xor data are taken from the mlbench R-package (Leisch and
Dimitriadou 2010). The crystal and encoded data sets are described in more
detail in Szepannek et al (2008), the mixture data set is taken from Bishop
(2006). The hvdata set is an artificial data set described in Hand and Vinciotti
(2003) and the orange and South-African-heart-disease (SAheart) data are
taken from Hastie et al (2009). The crabs data are available in the MASS
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Table 1 Survey of classification methods and tuned parameters.

type method R-package parameters range

global lda MASS
(Venables and Ripley 2002)

mnr nnet
(Venables and Ripley 2002)

p-svm e1071 cost 2−5, 2−4, . . . , 24, 25

(Dimitriadou et al 2010) degree 1, 2, 3

observation- knn kknn k 1,2,3,10,25,50
specific (Schliep and Hechenbichler 2010)

llda klaR k [(0.1, 0.2, . . . , 0.5) ·#obs]
(Weihs et al 2005)

local kernels r-svm e1071 cost 2−5, 2−4, . . . , 25

(Dimitriadou et al 2010) gamma 2−5, 2−4, . . . , 25

prototype mda mda subclasses 1, 2, . . . , 5
(S original by Hastie et al 2009)

lvq1 class size (1, 2, . . . , 5) ·#class
(Venables and Ripley 2002) alpha 0.01, 0.03, 0.05

recursive rp rpart cp 0.005, 0.01, 0.015, . . . , 0.05
partitioning (Therneau et al 2010) minsplit 10, 12, 14, . . . , 30

rf randomForest mtry [(0.4, 0.6, . . . , 1.6) ·
√

dim]
(Liaw and Wiener 2002) ntree 100, 500, 1000, 2000

discriminant-
adaptive

llr k [(0.2, 0.3, . . . , 0.5) · 2#obs
#class )]

R-package (Venables and Ripley 2002) and the texture data are taken from
the ELENA data base (http://www.dice.ucl.ac.be/mlg/?page=Elena).

Only little preprocessing was done. Since handling of missing values is
beyond the scope of this paper observations containing them were omitted for
the sake of simplicity. Therefore, the number of observations given in Table 2
may be lower than the number reported on the UCI web site.

Since we want the differences between methods to be revealed we included
problems that are known to be easily linearly separable like iris and wine,
problems with quadratic decision boundaries like balance-scale or circle, as
well as multimodal problems (subclasses and subclasses2 ). Moreover, we chose
problems where some local classification methods are reported to yield good
results, for example in Hastie and Tibshirani (1996) mda is reported to ex-
hibit superior performance compared to lda, quadratic discriminant analysis
and classification trees on the waveform data set. The hvdata set (Hand and
Vinciotti 2003) is especially designed for llr. Originally, it is a two dimensional
problem where the contour lines of the class posterior distribution are not par-
allel which leads to a poor fit of a global logistic regression model. We use a
modified version where the contour lines are not placed symmetrically around
the true decision boundary and which has been augmented to six dimensions.

We are aware of all the problems connected with using a large amount of
data from repositories like UCI, e. g., see Soares (2003) and Saitta and Neri
(1998) for a discussion of this topic. On the other hand we want to point out the
following facts: Not many alternatives exist if one wants to assess classification

http://www.dice.ucl.ac.be/mlg/?page=Elena
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algorithms under various difficult and “realistic” conditions. And we are not
interested in proving that one of our considered algorithms is “the best one for
all tasks”. Rather we want to study advantages and drawbacks of algorithmic
variants and groups of algorithms.

Table 2 Survey of the 49 data sets used in the benchmark study: Number of observations,
number of classes, dimensionality, number of numeric and number of categorical predictors

data set #obs #class dim #num #categ data set #obs #class dim #num #categ

balance-scale 625 3 4 4 0 orange 1000 2 10 10 0
breast-cancer 277 2 9 0 9 page-blocks 5473 5 10 10 0
breast-w 683 2 9 0 9 pima 768 2 8 8 0
car 1728 4 6 0 6 ringnorm 1000 2 4 4 0
circle 1000 2 4 4 0 SAheart 462 2 9 8 1
cmc 1473 3 9 2 7 segment 2310 7 16 16 0
crabs 200 2 5 5 0 sonar 208 2 60 60 0
credit-a 653 2 15 6 9 soybean 562 15 35 0 35
credit-g 1000 2 20 7 13 spect 267 2 22 0 22
crystal 2746 3 37 37 0 spirals 1000 2 2 2 0
cuboids 1002 4 3 3 0 splice 3190 3 60 0 60
dermatology 358 6 34 1 33 subclasses 300 2 2 2 0
encoded 794 2 6 6 0 subclasses2 990 3 5 5 0
glass 214 6 9 9 0 tae 151 3 5 3 2
haberman 306 2 3 2 1 texture 5500 11 40 40 0
heart-c 296 2 13 6 7 threenorm 1000 2 4 4 0
heart-statlog 270 2 13 13 0 tic-tac-toe 958 2 9 0 9
hvdata 1000 2 6 6 0 twonorm 1000 2 4 4 0
ionosphere 351 2 33 33 0 vehicle 846 4 18 18 0
iris 150 3 4 4 0 vote 232 2 16 0 16
kdd-synth-control 600 6 60 60 0 vowel 990 11 9 9 0
liver-disorders 345 2 6 6 0 waveform 1000 3 21 21 0
mfeat-fourier 2000 10 76 76 0 wine 178 3 13 13 0
mixture 200 2 2 2 0 xor 1000 8 4 4 0
optdigits 5620 10 62 62 0

3.4 Testing generalization performance

Different parametric and non-parametric alternatives exist to test the per-
formance value sets for differences in location. We use a linear mixed effects
model proposed by Eugster et al (2008). The observed performance value pij
of a learner i on test set j is modeled as

pij = γi + δj + εij .

The above equation includes a fixed effect γi for the underlying true perfor-
mance of learner i and a random effect δj for the test set. The latter blocking
factor encodes the fact that all algorithms share the same training and test
samples. As we are interested in comparing all algorithms with each other,
Tukey contrasts are used to test for significant pairwise differences between
the γi and pairwise simultaneous confidence intervals are calculated. We al-
ways use a family-wise significance level of α = 0.05 in the following analysis.
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3.5 Preference orderings

Using the mixed effects model of the previous section we produce an order
relation ≺ on the learning algorithms for each data set where a ≺ b means
that the performance of learner a is significantly smaller than the one of b.
We visualize these order relations as graphs, see Fig. 1 for four examples.
In Eugster et al (2008) it is proposed to further transform the ordering to a
ranking between equivalence classes of algorithms if possible. In many of our
results this is not valid, e. g., consider the result for the vowel data set in Fig.
1: This relation is not negative transitive, as r-svm ≺ knn and knn ≺ p-svm
both do not hold, but r-svm ≺ p-svm does. Topologically sorting this graph
results in knn ≈ r-svm ≺ p-svm ≺ . . . which implies that there is a significant
difference between knn and p-svm which is not true. Instead, we propose to
always directly work with the order relation and to only derive properties which
are independent of any additional assumptions about the relation structure:

For a data set D we call an algorithm a

– dominated, if another algorithm b exists so that b ≺ a,
– (relatively) optimal, if a is not dominated,
– (relatively) worst, if a is dominated, but does not dominate any other

algorithm.

3.6 Software and execution of experiments

All our experiments are conducted within the statistical programming lan-
guage R (R Development Core Team 2010). A large number of different pack-
ages are needed to provide the implementations of all used learners, we have
used the mlr package (Bischl 2010) to interface these. This package also pro-
vides most standard resampling techniques of machine learning, any nested
combination of them and the possibility to perform hyperparameter tuning.
For subsequent analysis the benchmark results are passed to the benchmark
package (Eugster et al 2008). Although it contains many tools for visualiza-
tion, these are not really feasible here due to the large number of data sets and
benchmark ’s current requirement to create rankings of equivalence classes. We
mainly use it to perform significance tests regarding differences in performance.

3.7 The problem of algorithmic failures

If one conducts experiments of a larger scale some algorithmic runs often fail
(e. g., due to numerical problems). The real problem stems from the fact that
these failures might only occur on a subset of resampling iterations and one
does not want to discard the results of the whole experiment. Simply omitting
these “missing values” or imputing them by, e. g., the mean of the remaining
performance values favors the algorithm unfairly: The resampled data where
it failed might have been more difficult and the competing algorithms might
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have scored relatively badly on them, but producing no result at all should
be considered even worse. On the other hand, imputing them by the worst
performance value possible will likely result in a multimodal distribution and
hindering subsequent tests.

We decided to use an ad hoc rule here: If the algorithm fails on more than
20% of all resampling iterations we consider its behavior as too unreliable for
the current data set and therefore set all its performance values to the worst
possible - those achieved by the data-independent rule on the 100 subsam-
ples. If it is less than 20% we impute by sampling from an estimated normal
distribution of the remaining values in order to not violate the normality as-
sumption of the mixed effects model in Sect. 3.4. In any case we report the
percentage of failures in the node labels of the preference relations (see Fig.
1).

4 Results and discussion

In this section we present all results obtained from our benchmark experiments
and discuss their relevance w.r.t. the questions asked in the introduction.

4.1 Basic results, preference orderings and comparison to selected results
from the literature

First, Table 3 presents the mean error rates of all considered classifiers on
all data sets. From the underlying distributions we have calculated 49 learner
preference orderings – one for each data set. Because of space limitations
we cannot present all of them graphically in this article, but instead display
exemplary relations for four data sets in Fig. 1.

Looking at the preference orderings we make the following observations:
Contrary to Hastie and Tibshirani (1996) we arrive at different results concern-
ing the waveform data set. They report superior performance of mda compared
to lda and classification trees. Our results indicate that ordinary multinomial
logistic regression significantly outperforms mda. The remaining linear meth-
ods lda and llr perform equally well. The hvdata set is especially constructed
to meet the special conditions llr is designed for, that is, a linear decision
boundary, but contour lines of the class posterior distribution that are not
parallel. Indeed, the fit of llr in terms of deviance is better than the fit of mnr,
and llr achieves the lowest error rate. However, this is not significantly lower
than the error rates of almost all other methods that also lie near the noise
level of about 26%.
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Table 3 Mean error rates obtained on the 49 data sets for all eleven classifiers in the
benchmark study.

knn lda llda llr lvq1 mda mnr p-svm r-svm rf rp

balance-scale 0.11 0.13 0.08 0.09 0.15 0.10 0.11 0.01 0.04 0.11 0.22
breast-cancer 0.25 0.41 0.41 0.31 0.41 0.41 0.29 0.26 0.24 0.25 0.26
breast-w 0.03 0.04 0.46 0.08 0.04 0.46 0.08 0.04 0.03 0.46 0.05
car 0.06 0.11 0.06 0.39 0.46 0.46 0.07 0.01 0.01 0.02 0.05
circle 0.12 0.51 0.25 0.43 0.36 0.28 0.51 0.02 0.03 0.10 0.18
cmc 0.50 0.48 0.46 0.49 0.50 0.65 0.50 0.44 0.45 0.46 0.45
crabs 0.06 0.00 0.00 0.00 0.29 0.00 0.00 0.00 0.00 0.11 0.13
credit-a 0.14 0.14 0.50 0.15 0.50 0.49 0.14 0.14 0.14 0.13 0.15
credit-g 0.25 0.25 0.42 0.26 0.42 0.42 0.25 0.24 0.23 0.24 0.27
crystal 0.21 0.21 0.19 0.20 0.30 0.21 0.21 0.19 0.19 0.20 0.26
cuboids 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dermatology 0.04 0.80 0.80 0.18 0.23 0.80 0.08 0.04 0.04 0.02 0.06
encoded 0.12 0.13 0.10 0.10 0.13 0.10 0.09 0.10 0.10 0.09 0.10
glass 0.30 0.39 0.30 0.40 0.36 0.32 0.37 0.31 0.32 0.22 0.31
haberman 0.26 0.25 0.28 0.27 0.25 0.39 0.26 0.27 0.28 0.27 0.27
heart-c 0.17 0.16 0.50 0.17 0.50 0.50 0.16 0.17 0.17 0.17 0.22
heart-statlog 0.17 0.17 0.18 0.17 0.36 0.16 0.16 0.16 0.16 0.17 0.22
hvdata 0.27 0.27 0.27 0.26 0.29 0.27 0.26 0.27 0.26 0.28 0.28
ionosphere 0.14 0.13 0.46 0.13 0.15 0.12 0.13 0.10 0.05 0.07 0.12
iris 0.05 0.02 0.03 0.03 0.04 0.02 0.04 0.05 0.03 0.05 0.05
kdd-synth 0.03 0.03 0.03 0.08 0.03 0.01 0.17 0.01 0.01 0.01 0.12
liver-disorders 0.35 0.33 0.29 0.32 0.36 0.34 0.32 0.29 0.29 0.26 0.34
mfeat-fourier 0.19 0.19 0.16 0.20 0.20 0.17 0.22 0.16 0.18 0.17 0.27
mixture 0.26 0.26 0.25 0.30 0.26 0.26 0.27 0.26 0.26 0.27 0.28
optdigits 0.02 0.05 0.90 0.03 0.05 0.04 0.04 0.01 0.07 0.02 0.20
orange 0.27 0.49 0.33 0.48 0.31 0.24 0.49 0.06 0.06 0.10 0.16
page-blocks 0.03 0.05 0.04 0.04 0.09 0.05 0.04 0.03 0.03 0.03 0.03
pima 0.25 0.23 0.23 0.23 0.30 0.23 0.23 0.24 0.23 0.24 0.25
ringnorm 0.19 0.37 0.20 0.34 0.28 0.22 0.37 0.17 0.17 0.19 0.21
SAheart 0.30 0.27 0.29 0.29 0.45 0.45 0.27 0.28 0.28 0.31 0.30
segment 0.09 0.16 0.14 0.10 0.21 0.16 0.11 0.09 0.08 0.06 0.12
sonar 0.15 0.26 0.25 0.29 0.31 0.24 0.26 0.15 0.13 0.17 0.28
soybean 0.11 0.89 0.90 0.19 0.12 0.90 0.10 0.08 0.08 0.08 0.13
spect 0.19 0.18 0.20 0.21 0.19 0.33 0.19 0.18 0.18 0.17 0.18
spirals 0.00 0.34 0.35 0.34 0.40 0.30 0.34 0.34 0.00 0.02 0.05
splice 0.13 0.61 0.61 0.09 0.61 0.61 0.09 0.05 0.04 0.03 0.05
subclasses 0.09 0.34 0.09 0.39 0.10 0.08 0.33 0.09 0.09 0.09 0.08
subclasses2 0.28 0.42 0.29 0.39 0.34 0.28 0.42 0.29 0.28 0.30 0.34
tae 0.43 0.48 0.67 0.54 0.62 0.66 0.49 0.47 0.48 0.39 0.51
texture 0.01 0.00 0.91 0.00 0.08 0.91 0.01 0.00 0.00 0.02 0.15
threenorm 0.12 0.15 0.12 0.15 0.13 0.12 0.15 0.12 0.11 0.12 0.15
tic-tac-toe 0.02 0.02 0.02 0.02 0.45 0.45 0.02 0.00 0.00 0.01 0.07
twonorm 0.03 0.02 0.02 0.03 0.03 0.02 0.02 0.03 0.03 0.03 0.06
vehicle 0.29 0.22 0.16 0.22 0.45 0.18 0.21 0.15 0.16 0.25 0.31
vote 0.08 0.03 0.50 0.07 0.49 0.49 0.07 0.04 0.03 0.04 0.03
vowel 0.02 0.46 0.12 0.29 0.36 0.19 0.42 0.03 0.01 0.05 0.36
waveform 0.16 0.15 0.16 0.15 0.16 0.15 0.14 0.14 0.14 0.14 0.26
wine 0.03 0.01 0.03 0.05 0.30 0.02 0.06 0.02 0.02 0.02 0.10
xor 0.11 0.81 0.11 0.68 0.21 0.06 0.82 0.08 0.08 0.01 0.04

4.2 Dominance relations between algorithms and “Do local variants
outperform global counterparts?”

Since we cannot address all preference relations in detail we aggregate our
results in the following way. In Table 4 it is shown how often one algorithm
dominates a competing candidate and in Table 5 how often each algorithm is
(relatively) optimal or worst for a data set, according to our terminology from
Sect. 3.5. Quite a few useful observations can already be made: Both the global
and local variants of the SVM perform very well, as does the random forest.
Interestingly, the SVMs and the random forest seem to compliment each other
in the sense that if one does not perform well on a given data set, the other
method is a good option. lvq1 is among the worst methods for nearly half of all
considered data sets. Also, while the local versions of lda (llda and mda) are
able to significantly outperform lda in quite a few instances, their performance
is significantly worse about the same number of times. The same conclusion
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Fig. 1 Exemplary preference orderings for four data sets. Nodes refer to learners and we also
show their mean misclassification error for reference. A learner A significantly outperforms
learner B if only an upward leading path of edges connects A with B.

can be drawn for mnr and its local counterpart llr. This means one cannot
always simply use the locals variants instead of the base method and trust in
achieving a better or equal result. While their larger flexibility offers indeed
the possibility for significant improvements in some scenarios, they also carry
the risk of worsening the result because of their increased variance (Schiffner
et al 2012).

4.3 On which data sets are local methods beneficial?

Again, using the concept of dominating algorithms from Sect. 3.5, we will now
structure the data sets into different subgroups depending on which algorithms
perform well on them. For subsequent analysis in further experiments we think
it is worthwhile to have some knowledge available on which data sets local
methods might actually perform well and which are therefore suitable first
candidates for further comparison experiments.
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Table 4 Counts of how often one algorithm (row) dominates another one (column) out of
the 49 data sets.

knn lda llda mda lvq1 p-svm r-svm rf rp mnr llr

knn 0 22 20 24 37 2 2 6 28 19 24
lda 10 0 12 13 26 1 1 7 21 7 11

llda 9 19 0 15 26 0 1 5 18 17 19
mda 9 15 7 0 28 3 3 4 18 15 16
lvq1 0 10 8 8 0 1 1 2 9 11 12

p-svm 23 30 26 31 42 0 3 15 33 30 33
r-svm 24 31 26 31 42 3 0 18 35 31 33

rf 24 30 26 29 40 11 11 0 35 29 29
rp 8 18 19 23 28 2 1 2 0 17 18
llr 11 15 15 21 29 1 1 8 20 10 0

mnr 11 11 16 22 30 0 0 6 19 0 11

Table 5 Counts of how often one algorithm is optimal and worst out of the 49 data sets.

knn lda llda llr lvq1 mda mnr p-svm r-svm rf rp

optimal 18 14 16 12 4 14 13 35 36 29 8
worst 2 13 13 6 24 17 8 1 0 3 9

We define our data set groups in the following way: If one of the models
which construct linear decision boundaries (lda, mnr, llr or a p-svm where a
degree of 1 is selected in tuning most of the time) is (relatively) optimal, we
call this data set “linear”. Quite a large number of 19 data sets fall into this
category, namely:

crabs, cuboids, encoded, haberman, heart-c, heart-statlog, hvdata, iris, kdd-
synthetic-control, mixture, optdigits, pima, SAheart, spect, texture, twonorm,
vote, waveform, wine.

If only local classifiers (including llr) are optimal we call this data set
“local”, as an algorithm of this type is required to achieve superior results. We
can identify 12 such data sets:

credit-a, dermatology, glass, ionosphere, liver-disorders, page-blocks, seg-
ment, spirals, splice, tae, vowel, xor.

Using the symmetric difference as a distance measure between the algo-
rithm orderings per data set, we apply a hierarchical clustering approach (com-
plete linkage), see Fig. 2. We observe that the more difficult data sets, which
either require local models or a flexible global one, cluster in the left part of the
plot (in the latter case the p-svm is mainly the only optimal global model and
a higher degree for the polynomial is selected during tuning). In the middle of
the plot a large cluster of mostly linear data sets can be located.
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Fig. 2 Hierarchical clustering (complete linkage) of the 49 data sets based on the symmetric
difference of the algorithm ordering. Adjacent data sets have a similar performance ordering
of algorithms.

4.4 Do local methods or different types of local methods perform in a similar
way?

In this section we will take a look at whether local methods, in general or
different types, actually perform well on the same data sets. Based on the
mean ranks of the eleven classifiers per data set we conduct a hierarchical
clustering (complete linkage). The resulting dendrogram is shown in Fig. 3.

On the left hand side a cluster is formed by four very flexible methods
(r-svm, p-svm, rf and knn). Interestingly, llda is not contained in this group,
although it is a combination of k nearest neighbors and linear discriminant
analysis. On the right hand side there is a cluster consisting of linear methods
(mnr, llr and lda). The most similar methods with respect to their perfor-
mance are the discriminant-adaptive version of logistic regression, llr, and its
counterpart mnr. This is not surprising because both methods produce linear
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Fig. 3 Hierarchical clustering (complete linkage) of classification methods. The dendrogram
was calculated based on the distances between the mean ranks of the classifiers per data
set.

decision boundaries and the only effect of llr is a translation and rotation of
the separating hyperplanes.

In the introduction we raised the questions if local methods or different
types of local methods show similar behavior. The different types of local
methods are not reflected by the dendrogram. Besides the flexibility of the
methods the underlying base method seems to have a large impact on the
performance. As already mentioned mnr and llr that are based on logistic
regression behave very similar. The same holds for the SVM variants p-svm
and r-svm. Moreover, llda and mda which are both localized variants of lda
form a cluster and, additionally, the group containing these two methods is
close to the cluster that consists of linear methods and thus includes lda.
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4.5 Identification of an optimal, reduced set of algorithms

The general problem of reducing the burden of model selection is a still preva-
lent topic in machine learning. For every algorithm there might be a special
data situation where it performs best, but the resulting option to try out every
available learner for a given task is highly impractical. Even worse, algorithms
have to be tuned for optimal performance and other, uncertain choices (for
example in preprocessing) can dramatically influence the outcome, too. We
therefore think that it is useful to identify few algorithms, which complement
each other, e. g., which perform well if the other ones fail and vice versa. There-
fore, we now construct a minimal set of classifiers S so that for each data set
D we have at least one algorithm from the top scoring group on D in S. In
our case, by considering only r-svm and rf one would have achieved optimal
results for all but two data sets. These are the balance-scale data set, where
only the p-svm scores best and the haberman data set, where knn, lda, llr, lvq1,
mnr and rp all score best. Such a reduced algorithm set now provides a useful
starting point for further experiments where computation time is limited and
one cannot try out every available learner.

5 Conclusion and outlook

We present a benchmark study for eleven global and local classification meth-
ods on a large number of artificial and real-world data sets. Significance tests
are used to determine whether there are substantial differences in predictive
performance between algorithms. We define the notions of a classifier being
relatively optimal or worst for a given task and provide a novel way to select a
minimal, optimal set of complementary methods. Based on the performance of
the classification methods we determine different types of classification prob-
lems. It turns out that for many data sets in the benchmark study simple
linear methods are sufficient to achieve satisfactory results. We identify twelve
data sets where only local methods yield optimal performance. Among them
are many real-world data sets. The two artificial data sets in this group, xor
and spirals, are rather complicated decision problems, meeting our expecta-
tion that local methods perform well on complex tasks. It is difficult to make
general statements about the performance of local classification methods. This
has been clear in advance since we consider distinct types of local methods.
Moreover, even local approaches of the same type are found to show differ-
ent behavior. What seems to be more important is the general flexibility of
the learner and the base method from which the local variant is derived. Lo-
cal versions do not always perform at least as good as their global counter-
parts. Although in some instances significant improvements can be achieved,
on other occasions worse results are obtained. We suspect that this is due to
overfitting in cases with noise where the underlying true model is quite sim-
ple. Gaining deeper insight into the underlying bias-variance trade-offs could
be a subject for future work. We could not identify any (practically useful)
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relations between data characteristics and performance differences between
various algorithms or groups. The only criterion we used for evaluation is the
misclassification rate. Further work may also take into account computation
time and/or interpretability of the resulting models.
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