
Benchmarking Classification Algorithms on
High-Performance Computing Clusters

Bernd Bischl, Julia Schiffner, and Claus Weihs

Chair of Computational Statistics, Department of Statistics, TU Dortmund,
Germany, {bischl,schiffner,weihs}@statistik.tu-dortmund.de

Abstract. Comparing and benchmarking classification algorithms is an important
topic in applied data analysis. Extensive and thorough studies of such a kind will
produce a considerable computational burden and are therefore best delegated to
high-performance computing clusters. We build upon our recently developed R pack-
ages BatchJobs (Map, Reduce and Filter operations from functional programming
for clusters) and BatchExperiments (Parallelization and management of statisti-
cal experiments). Using these two packages, such experiments can now effectively
and reproducibly be performed with minimal effort for the researcher. We present
benchmarking results for standard classification algorithms and study the influence
of pre-processing steps on their performance.

1 Introduction

Assessing the performance of (supervised) classification methods by means
of benchmark experiments is common practice. For example, a well-known
study of such a kind was conducted in the StatLog project (King et al.
(1995)). Benchmark studies often require large computational resources and
are therefore best executed on high-performance computing clusters. Bis-
chl et al. (2012) have recently developed two R packages BatchJobs and
BatchExperiments that allow to comfortably control a batch cluster within
R. An interesting problem that can be investigated by means of a benchmark
study is the impact of data pre-processing operations on the performance
of classification methods. Questions of interest are for example: ‘How often
does pre-processing lead to a considerably increased/decreased performance?’
or ‘Are there pre-processing steps that work well with certain classification
methods?’. There are many case studies available which report that certain
pre-processing options work well for the classification problem at hand. We
have found also some studies that compare several pre-processing options (e.g.
Pechenizkiy et al. (2004)), but many of them consider only very few classifiers
and/or classification problems. To our knowledge there are no larger studies
that systematically investigate the usefulness of several pre-processing options



2 Bernd Bischl, Julia Schiffner, and Claus Weihs

and their combinations for several classification methods and a larger number
of data sets (cp. e.g. Crone et al. (2006)).

We investigate the effect of three common steps, outlier removal, princi-
pal component analysis and variable selection and their combinations on the
performance of eight standard classification methods based on 36 benchmark
data sets. Data pre-processing is discussed in Section 2. In Section 3 the de-
sign of the benchmark study is described. Section 4 addresses some technical
details concerning the execution of the study by means of the R packages
BatchJobs and BatchExperiments. The results are given in Section 5. Sec-
tion 6 summarizes our findings and provides an outlook to future research.

2 Data Pre-processing

In supervised classification we are given a training data set {(xi, yi), i =
1, . . . , n}, where xi ∈ Rp, i = 1, . . . , n, are realizations of p random vari-
ables. We suppose that there are pnum numerical and pcat categorical variables
(pnum +pcat = p), and write xi = (xi,num,xi,cat). Each observation has a class
label yi = k ∈ {1, . . . ,K}. The number of training observations from class k
is denoted by nk.

In the following we describe the three pre-processing steps, outlier removal,
principal component analysis and variable selection, investigated in our study.

It is well known that if classical classification methods are applied to data
containing outliers their performance can be negatively affected. A universal
way to deal with this problem is to remove the outliers in an initial pre-
processing step. In our study the identification of outliers is based on the
numerical variables only and every class is considered separately. We use a
common approach based on a robust version of the Mahalanobis distance. For
each class k we calculate

RMk
i =

√
(xi,num − µ̂k,MCD)′Σ̂

−1
k,MCD(xi,num − µ̂k,MCD) (1)

for all i with yi = k. µ̂k,MCD ∈ Rpnum and Σ̂k,MCD ∈ Rpnum×pnum are the
class-specific minimum covariance determinant (MCD) estimates of location
and scatter of the numerical variables computed by the Fast MCD algorithm
(Rousseeuw and van Driessen (1999)). The i-th observation is regarded as
outlier and (xi, yi) is removed from the training set if RMk

i > χ2
pnum,0.975

(the 0.975-quantile of the χ2-distribution with pnum degrees of freedom). For
MCD estimation only the hk < nk observations whose covariance matrix has
the lowest determinant are used. hk is calculated by

hk =

{
mk if α = 0.5

b2mk − nk + 2(nk −mk)αc if 0.5 < α < 1
(2)

with mk = b(nk+pnum+1)/2c (Rousseeuw et al. (2012)). In our study, for each
class the same α-value is used and α is tuned as described in Section 3.



Benchmarking Classification Algorithms 3

Table 1. Misclassification rates of CART on the threenorm problem obtained by
using the p original variables and all p principal components

p 2 4 6 8 10 12 14 16 18 20

original variables 0.04 0.07 0.11 0.12 0.16 0.14 0.19 0.20 0.22 0.21
principal components 0.03 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.01

Principal Component Analysis (PCA) converts a set of variables via an
orthogonal transformation into a set of uncorrelated variables that are called
principal components. In our study a PCA is conducted for the numerical
variables, which are scaled to zero mean and unit variance first, based on all
training observations. The original observations xi,num can be replaced by the
PCA scores zi ∈ Rpnum resulting in a training set with elements ((zi,x

cat
i ), yi).

Usually, PCA is used for dimension reduction and just the first few principal
components that explain a fixed large percentage of the total variance are
selected. Alternatively, the most important principal components can be cho-
sen via some variable selection method. But even if no dimension reduction is
done, the rotation of the original data may have a positive effect on the classi-
fication performance. As an illustration we consider the threenorm problem of
Breiman (1996), an artificial binary classification problem. The data for the
first class are drawn with equal probability from two p-dimensional standard
normal distributions with mean (a, a, . . . , a)′ ∈ Rp and (−a,−a, . . . ,−a)′ re-
spectively. The second class is drawn from a multivariate normal with mean
(a,−a, a,−a, . . .)′ where a = 2/√p. The dimension p was varied from 2 to 20
and for each p we generated a training and a test data set of size 1000. A
classification tree (CART) was fitted to the training data and predicted on
the test data. As Table 1 shows, the misclassification rate of CART obtained
on the original variables increases with the dimension p. Moreover, a PCA
was conducted on the training data and all p principal components were used
in place of the original variables. In this case the error rate of CART is nearly
zero, even for large values of p. However, since PCA does not take class labels
into account, it is not guaranteed that the principal components are helpful
for discriminating the classes. Moreover, PCA captures only linear relation-
ships in the data. For this reason kernel PCA or (kernel) Fisher Discriminant
Analysis are also in use. But since we found that PCA is regularly applied
and that, to our knowledge, there are only few studies that assess the im-
pact of PCA pre-processing in classification (e.g. Pechenizkiy et al. (2004)),
PCA is investigated in our study. As described above we conduct a PCA for
the numerical variables based on all training observations. We either use all
components in place of the original variables or choose only some of them by
applying a variable selection method in the next step.

For variable selection we consider a filter approach. Filter methods rank
the variables according to some importance measure. In order to reduce the
number of variables based on this ranking, it is common to select either all



4 Bernd Bischl, Julia Schiffner, and Claus Weihs

training data

outlier removal
(α)

1

PCA
(–)

2

variable selection
(% of highest ranked)

3

train classifier

scaling parameters,
rotation matrix

selected variables

Training

scale and rotate
2

test data

use
selected variables

3

predict classifier

Prediction

Fig. 1. Pre-processing steps done before training and predicting a classifier

variables with an importance value larger than a fixed threshold or a certain
percentage of highest ranked variables (cp. Guyon and Elisseeff (2003)). We
employ the latter approach and use the mean decrease in accuracy in random
forests as importance criterion. In contrast to the first two pre-processing
steps, numerical as well as categorical variables are taken into account. The
percentage of selected variables is tuned as described in Section 3.

Fig. 1 summarizes the pre-processing steps conducted every time when
training a classifier (left-hand side) and when making predictions (right-hand
side). The three pre-processing operations are applied in the displayed order
from top to bottom. Outlier removal, PCA and variable selection are con-
ducted solely on the data used for training. The scaling parameters and the
rotation matrix determined by PCA, as well as the names of the selected vari-
ables, are stored and the test data are transformed accordingly when making
predictions. The switch symbols between the individual pre-processing steps
in Fig. 1 indicate that every single step can be activated or deactivated. Thus,
there exist 23 = 8 possible pre-processing variants (including the case where
no pre-processing is done at all).

3 Study Design

In order to assess the impact of the pre-processing operations described in
Section 2 on the performance of classification methods we have used the
following experimental setup: For every classifier we considered all 8 possi-
ble pre-processing variants. Prediction performance was evaluated by using
nested resampling and measuring the misclassification error rate. In the outer
loop, the complete data set was subsampled 30 times, producing 30 (outer)
training data sets of size 80% and 30 (outer) test sets of size 20%. If a classi-
fier (with pre-processing) had q > 0 associated hyperparameters, these were
tuned on the training data set by measuring the misclassification rate via 3
fold cross-validation. Tuning was performed by choosing an effective sequen-



Benchmarking Classification Algorithms 5

Table 2. Classification methods and pre-processing steps under consideration

method hyper- box R package
parameters constraints

ro outlier removal α [0.5, 1] robustbase

pca PCA – – stats

fil filter percentage [0.7, 1] FSelector

lda Linear Discriminant Analysis – – MASS

multinom Multinomial Regression – – nnet

qda Quadratic Discriminant Analysis – – MASS

naiveBayes Naive Bayes – –

rbfsvm Support Vector Machine C [2−10, 210] kernlab

with RBF kernel sigma [2−10, 210]
nnet Neural Networks decay [0.001, 0.1] nnet

rpart CART Decision Tree cp [0.001, 0.1] rpart

minsplit {5, . . . , 50}
randomForest Random Forest ntree {100, . . . , 2000} randomForest

Table 3. Data sets taken from the UCI repository. Displayed are the number of
observations and the number of numerical and categorical variables

data obs num cat data obs num cat

BalanceScale 625 4 0 LiverDisorders 345 6 0
BloodTransfusion 748 4 0 MolecularBiologyPromoters 106 0 57
BreastCancer 699 0 9 Monks3 122 6 0
BreastCancerUCI 286 0 9 Parkinsons 195 22 0
BreastTissue 106 9 0 Phoneme 4509 256 0
Cmc 1473 2 7 PimaIndiansDiabetes 768 8 0
CoronaryHeartSurgery 1163 2 20 SAheart 462 8 1
Crabs 200 5 1 Segment 2310 19 0
Dermatology 366 1 33 Shuttle 256 0 6
Glass2 163 9 0 Sonar 208 60 0
GermanCredit 1000 7 13 Spambase 4601 57 0
Haberman 306 2 1 Spect 80 0 22
HayesRoth 132 4 0 Spectf 80 44 0
HeartCleveland 303 6 7 Splice 3190 0 60
HeartStatlog 270 13 0 TicTacToe 958 0 9
Ionosphere 351 32 1 Vehicle 846 18 0
Iris 150 4 0 VertebralColumn 310 6 0
KingRook vs KingPawn 3196 0 36 Waveform5000 5000 40 0

tial model-based optimization approach, in which the true relation between
the parameters and the performance is approximated by a kriging regression
model in each iteration (Koch et al. (2012)). In every iteration the so called ex-
pected improvement was maximized to generate a new promising design point
to visit subsequently. The budget for the optimization process was 10q evalu-
ations for an initial latin hypercube design and 40q evaluations for sequential
improvements. After tuning, the best parameter combination was selected, the
model was trained on the complete (if necessary pre-processed) outer training
data set and the (pre-processed) outer test set was predicted. Table 2 shows
the pre-processing steps and classification methods under consideration and
displays the box constraints for the optimized hyperparameters.

We used 36 data sets from the UCI Machine Learning Repository. Table 3
provides a survey of basic properties of the data sets.

4 BatchExperiments and Parallelization Scheme

Bischl et al. (2012) have recently published two R packages BatchJobs and
BatchExperiments for parallelizing arbitrary R code on high-performance



6 Bernd Bischl, Julia Schiffner, and Claus Weihs

batch computing clusters. The former enables the basic parallelization of Map
and Reduce operations from functional programming on batch systems. In
this study we have used BatchExperiments, as it is especially constructed for
evaluating arbitrary algorithms on arbitrary problem instances. A problem
instance in our case is a classification data set, while an algorithm application
is one run of tuning, model-fitting and test set prediction for one classifier with
pre-processing operations. This leads to 36 datasets × 30 iterations of outer
subsampling × 8 classifiers × 8 preprocessing variants = 69120 jobs. It should
be noted that one computational job is already quite complicated as it contains
up to 200 iterations of tuning via sequential model-based optimization. Due
to space limitations we cannot go into more technical details how the code
is structured, but refer the reader to Bischl et al. (2012), who demonstrate
the parallelization of a simple classification experiment for the well-known iris
data set. Job runtimes were quite diverse and ranged from a few seconds to
more than 18 hours, depending on the classifier and data set, summing up to
more than 750 days of sequential computation time.

5 Results

In order to analyze the results we have used the non-parametric Friedman test
as a means of comparing the locations of the 30 misclassification rates per clas-
sifier (0.05 level of significance). Significant differences were detected by post-
hoc analysis on all pairs of considered classifiers. We controlled the family-wise
error rate through the usual procedure for multiple comparisons for this test
as outlined in Hollander and Wolfe (1999). We have performed comparisons in
two different ways: First, we compared in the group of basic classifiers without
any pre-processing (to figure out which classifiers worked best in their basic
form), then we compared in 8 groups of the 8 pre-processing variants of each
classifier (to figure out which pre-processing operations worked best for which
classifiers). In Table 4 the main aggregated results of this study are presented:
The first row displays how often each basic classifier was among the best ba-
sic methods for each of the 36 considered data sets. “Among the best” here
means that it was not significantly outperformed by another basic method.
The rows labeled “ro” (outlier removal), “pca” (PCA) and “fil” (variable se-
lection) count how often a classifier was significantly improved by adding only
the respective pre-processing operation. The number in parentheses indicates
how often the classifier was significantly worsened by doing this. The last line
counts how often a classifier was significantly improved by comparing it to
the best of the 7 pre-processing variants of itself.

It is in line with theoretical considerations of the 8 basic classifiers that
a) non-robust methods like lda and naiveBayes benefit from outlier removal,
b) a method like naiveBayes, which assumes independent variables given the
class, benefits from decorrelating the variables by PCA and c) that the perfor-
mance of methods like naiveBayes and qda can deteriorate with an increasing



Benchmarking Classification Algorithms 7

Table 4. Main aggregated results, for details see text in this section

rbfsvm lda multinom naiveBayes nnet qda randomForest rpart

basic 32 (-) 14 (-) 17 (-) 13 (-) 13 (-) 5 (-) 25 (-) 13 (-)
ro 0 (4) 3 (4) 2 (7) 3 (4) 0 (2) 1 (8) 0 (4) 0 (3)

pca 0 (3) 1 (2) 0 (0) 7 (7) 6 (0) 1 (0) 2 (8) 3 (8)
fil 2 (0) 1 (0) 1 (0) 5 (0) 3 (0) 5 (0) 1 (0) 0 (0)

any 2 (-) 6 (-) 4 (-) 14 (-) 9 (-) 10 (-) 5 (-) 3 (-)

Table 5. Some selected results where strong improvements occurred

data learner pre-processing error reduction

BreastTissue nnet pca 0.226
Crabs naiveBayes pca 0.361
Crabs randomForest ro+pca+fil 0.083

Haberman qda pca+fil 0.125
HayesRoth lda ro 0.122
HayesRoth multinom ro+fil 0.086

Segment nnet pca+fil 0.221
Spectf lda ro+fil 0.121
Spectf nnet pca+fil 0.081

number of variables and therefore a filter method might be helpful. Table 5
displays some additional selected results, where extremely large absolute error
reductions were observed.

Unfortunately not every (tuned) pre-processing operation will always ei-
ther improve the model or result in comparable performance. The filtering
operation is an exception here (see Table 4). This is due to the fact that set-
ting the percentage parameter of the filter operator to 1 results in the basic
classifier with all variables, and our tuning process is apparently able to detect
this for the data sets where this is appropriate. Actually, this should be the
preferable behavior of the operator for outlier removal as well: When it is best
to remove no data point, tuning should detect this and fall back to the basic
model. The reason that this does not perfectly work in all of our experiments,
points to the fact that the quantile value of the χ2- distribution for outlier
removal should have been included in tuning as well. In summary: If one is
interested in the absolute best model for a given data set, we recommend to
tune across the whole model space of all reasonable pre-processing variants.
This is time-consuming, but can again be sped up by parallelization (and the
use of our packages).

6 Summary and Outlook

In this article we have applied the R packages of Bischl et al. (2012) to per-
form a large scale experimental analysis of classification algorithms on a high-
performance batch computing cluster. In this study, our goal was to analyze
the influence of various pre-processing operations on 8 different classifiers. It
appears that it is possible to considerably improve the performance by data
pre-processing in some cases. However, for the majority of the investigated
classification problems pre-processing did not result in improvements. We can



8 Bernd Bischl, Julia Schiffner, and Claus Weihs

also see that for different classifiers different pre-processing options are bene-
ficial and that some classifiers profit much more from the pre-processing steps
in this investigation than others. It was especially hard to improve upon the
best performing basic method per data set. Here, sometimes improvements
around 1-2 % could be observed but as none of these were significant we
were reluctant to report these. We also think that it would be useful for the
community as a whole, if a digital repository would exist, where results and
descriptions of experiments, such as the ones conducted in this paper, are
stored in digital form.

References

BREIMAN, L. (1996): Bias, variance, and arcing classifiers, Technical Report 460,
Statistics Department, University of California at Berkeley, Berkeley, CA.

BISCHL, B., LANG, M., MERSMANN, O., RAHNFÜHRER, J. and WEIHS, C.
(2012): BatchJobs and BatchExperiments: Abstraction Mechanisms for Using
R in Batch Environments. Journal of Statistical Software, submitted.

CRONE, S. F., LESSMANN, S. and STAHLBOCK, R. (2006): The Impact of Pre-
processing on Data Mining: An Evaluation of Classifier Sensitivity in Direct
Marketing. European Journal of Operational Research, 173, 781–800.

GUYON, I. and ELISSEEFF, A. (2003): An Introduction to Variable and Feature
Selection. Journal of Machine Learning Research, 3, 1157–1182.

HOLLANDER, M. and WOLFE, D. A. (1999): Nonparametric Statistical Methods.
2nd Edition, Wiley, New York.

JONES, D. R., SCHONLAU, M. and WELCH, W. J. (1998): Efficient Global Op-
timization of Expensive Black-Box Functions. Journal of Global Optimization,
13(4), 455–492.

KING, R. D. and FENG, C. and SUTHERLAND, A. (1995): StatLog: Comparison
of Classification Algorithms on Large Real-World Problems. Applied Artificial
Intelligence, 9(3), 289–333.

KOCH, P., BISCHL, B., FLASCH, O., BARTZ-BEIELSTEIN, T., WEIHS, C. and
KONEN, W. (2012): Tuning and Evolution of Support Vector Kernels. Evolu-
tionary Intelligence, 5(3), 153–170.

PECHENIZKIY, M., TSYMBAL, A. and PUURONEN, S. (2004): PCA-Based Fea-
ture Transformation for Classification: Issues in Medical Diagnostics. In: Pro-
ceedings of the 17th IEEE Symposium on Computer-Based Medical Systems.

ROUSSEEUW, P., CROUX, C., TODOROV, V., RUCKSTUHL, A., SALIBIAN-
BARRERA, M., VERBEKE, T., KOLLER, M. and MAECHLER, M.
(2012): robustbase: Basic Robust Statistics. R package version 0.9-2. URL
http://CRAN.R-project.org/package=robustbase.

ROUSSEEUW, P. J. and VAN DRIESSEN, K. (1999): A Fast Algorithm for the
Minimum Covariance Determinant Estimator. Technometrics, 41(3), 212–232.


