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Objective

This vignette describes the generic use of the selfmade software to produce valid post-selection inference, or
more specifically selective inference, for linear mixed and additive models after any type of variable selection
mechanism, which can be repeated in a bootstrap-like manner.

Prerequisites

• The framework assumes that covariates in all models to be fixed.
• It must be possible to fit the final model with the gamm4 function of the eponymous R package or the

gamm function from mgcv.
• It must be possible to define a deterministic function of a vector y ∈ Rn (referred to as

selection_function in the following) determining the selection result for which the practioner seeks
valid inference statements. In other words, the user has to define a function similar to the function
selection_function defined below, which is deterministic in the sense that for the same input y the
output should also be exactly the same.

• It must be possible to define a function, which checks the congruency of the result of the
selection_function and the original selection given when performing model selection on the original
data y. This is usually trivial and just a wrapper for the selection_function.

selection_function <- function(y)
{

# based on any input y of the same dimension as the original response
# a model is selected and mapped to an integer value
# ....
best_model_index <- get_best_model(list_of_models)

return(best_model_index)

}

Note that the selection_function should return the original result when called with the original data
vector y.

Approach

1. Run the experiment with the original_response
2. Save the model selection result (e.g., as integer indicating the selected model) as well as the final

model final_model (after refitting the model with gamm4 if a different package has been used for
model selection)
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3. Define the model selection function (selection_function)
4. Define the wrapper (check_congruency) function returning a logical value whether the result of any

model call of selection_function is equivalent to the original model selection result
5. Run the mocasin-function providing selective inference as follows:

res <- mocasin(mod = final_model,
checkFun = check_congruency,
this_y = original_response
# further options
)

Examples

• Example 1 demonstrates the package’s ability to reproduce classical inference if no model selection was
done.

• Example 2 demonstrates the use of the package for model selection with only gamm4 models
• Example 3 demonstrates the package’s ability to calculate valid inference regardless of the type of

model selection and packages involved (as long as the prerequisites are met)

Example 1

library(selfmade)
library(gamm4)
set.seed(0)
dat <- gamSim(1,n=500,scale=2) ## simulate 4 term additive truth

dat$y <- 3 + dat$x0ˆ2 + rnorm(n=500)
br <- gamm4(y~ s(x0) + s(x1), data = dat)
summary(br$gam) ## summary of gam

# do not use any selection
# - hence it's not necessary to define selection_function
# and the checl_congruency always returns TRUE
checkFun <- function(yb) TRUE

# calculate selective inference, which, in this case,
# except for an approximation error, should be equivalent
# to the unconditional inference
res <- mocasin(br, this_y = dat$y,

checkFun = checkFun,
nrlocs = c(0.7,1),
nrSamples = 1000, trace = FALSE)

# we get very similar results using
do.call("rbind", res$selinf)

Example 2

library(selfmade)
library(lme4)
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library(lmerTest)
# use the ham data and use scaled information liking
# as response
ham$Informed.liking <- scale(ham$Informed.liking)

# We first define a function to fit a model based on response
# This function is usually not required but can be
# specified in order to define the selection_function
# as a function of the model instead of as a function
# of the response vector
modFun <- function(y)
{

ham$y <- y
lmer(y ~ Gender + Information * Product + (1 | Consumer) +
(1 | Product), data=ham)

}

# define the selection_function:
# here this is done as function of a model
# which, in combination with modFun, can then
# be used as function
selFun <- function(mod) step(mod, reduce.fixed = FALSE)

# define a function which extracts the results
# of the selection procedure
extractSelFun <- function(this_mod){

this_mod <- attr(this_mod, "model")
if(class(this_mod)=="lm")

return(attr(this_mod$coefficients, "names")) else
return(c(names(fixef(this_mod)),

names(getME(this_mod, "theta"))))

}

# Now we run the initial model selection on the
# orginal data, which is a
# backward elimination of non-significant effects:
(step_result <- selFun(modFun(ham$Informed.liking)))
attr(step_result, "model")
# Elimination tables for random- and fixed-effect terms:
(sel <- extractSelFun(step_result))

# Now we can define the function checking the congruency
# with the original selection
checkFun <- function(yb){

this_mod <- modFun(yb)
setequal( extractSelFun(selFun(this_mod)), sel )

}
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# and compute valid p-values conditional on the selection
# (this takes some time and will produce a lot of warnings)
res <- mocasin(attr(step_result, "model"), this_y = ham$Informed.liking,

checkFun = checkFun, which = 1:4, nrSamples = 50, trace = FALSE)

print(res)

Example 3

# Run an AIC comparison between different additive models
# fitted with mgcv::gam
library(selfmade)
library(mgcv)
library(gamm4)

# create data and models
set.seed(2)
# use enough noise to get a diverse model selection
dat <- gamSim(1,n=400,dist="normal",scale=10)
b0123 <- gam(y~s(x0)+s(x1)+s(x2)+s(x3),data=dat)
b123 <- gam(y~s(x1)+s(x2)+s(x3),data=dat)
b013 <- gam(y~s(x0)+s(x1)+s(x3),data=dat)

# seems that the second model seems to be the most
# 'appropriate' one
which.min(AIC(b0123, b123, b013)$AIC)
# and refit the model with gamm4
b123_gamm4 <- gamm4(y~s(x0)+s(x1)+s(x3),data=dat)

# define selection_function
selection_function <- function(y)
{

dat$y <- y
list_of_models <- list(

gam(y~s(x0)+s(x1)+s(x2)+s(x3),data=dat),
gam(y~s(x1)+s(x2)+s(x3),data=dat),
gam(y~s(x0)+s(x1)+s(x3),data=dat)

)

# return an integer value which model is best
return(

which.min(sapply(list_of_models, AIC))
)

}

# define the congruency function
checkFun <- function(y) selection_function(y)==2

# compute inference
res <- mocasin(mod = b123_gamm4,
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checkFun = checkFun,
nrlocs = 3, # test one position of the spline
nrSamples = 10)

print(res)

References

Rügamer, D., Greven, S. Selective inference after likelihood- or test-based model selection in linear models,
Statistics & Probability Letters 140, 7-12 (2018). https://doi.org/10.1016/j.spl.2018.04.010.

Rügamer, D., Greven, S. Inference for L2-Boosting. Stat Comput 30, 279–289 (2020). https://doi.org/10.
1007/s11222-019-09882-0.

Rügamer, D., Baumann, P., Greven, S. Selective inference for additive and linear mixed models, Computa-
tional Statistics & Data Analysis 167, 107350 (2022). https://doi.org/10.1016/j.csda.2021.107350.

5

https://doi.org/10.1016/j.spl.2018.04.010
https://doi.org/10.1007/s11222-019-09882-0
https://doi.org/10.1007/s11222-019-09882-0
https://doi.org/10.1016/j.csda.2021.107350

	Objective
	Prerequisites
	Approach
	Examples
	Example 1
	Example 2
	Example 3

	References

