coinflibs: Conditional Inference after Likelihood-based Selection

David Riigamer

The package contains functions to calculate limits and conduct inference in a selective manner for linear
models after likelihood- or test-based model selection.

Example: Combining AIC search and significance hunting

install and load package
library("devtools")
install_github("davidruegamer/coinflibs")
library("coinflibs")

library(MASS)

use the cpus data

data("cpus")

Fit initial model

cpus$perf <- loglO(cpus$perf)
cpus$cach <- as.factor(cpus$cach)
mod <- 1m(perf ~ .-name, data = cpus)

use the stepAIC function to find the best model in a backward

stepwise search

cpus.lm <- stepAIC(mod, trace = FALSE, direction = "backward", steps = 3)
check model selection

cpus.1lm$anova$Step

recalculate all visited models in the first step
allvisited <- lapply(attr(mod$terms, "term.labels"),
function(x) update(mod, as.formula(pasteO('"perf ~ .-", x))))
combine the vistited models and the final model
loml <- c(allvisited, list(mod))

perform F-test at level

alpha = 0.001

and check for non-significant wvariables

coefTable <- anova(cpus.lm)

drop <- rownames(coefTable) [alpha < coefTable[-nrow(coefTable),5]]

drop mon-significant variable
cpus.lm2 <- update(cpus.lm, as.formula(pasteO(".~.-",drop)))

create list of models, which are examined during the significance search
lom2 <- list(cpus.lm, cpus.lm2)

now compute selective inference, which adjust for the AIC-based search as
well as significance hunting
selinf(# supply all lists of wvistted models, where the best model in the
first list is interpreted as the final model
lom2, # list given by signficance hunting
loml, # list given by AIC-based search
response = cpus$perf,
what = c("Ftest", "aic"), # spectify what type of selection was done
for each supplied list
sd = summary(cpus.lm2)$sigma

Example: Combining models visited during stepwise AIC search

install and load package
library("devtools")
install_github("davidruegamer/coinflibs")
library("coinflibs")

library (MASS)

use the cpus data

data("cpus")

Fit tnitial model

cpus$perf <- loglO(cpus$perf)

cpus$cach <- as.factor(cpus$cach)
cpus$name <- NULL

currentmod <- 1lm(perf ~ 1, data = cpus)

make a stepwise AIC-based forward search
for all wvariables in the pool of possible covariates
varsInPool <- colnames(cpus) [-7]

since the stepAIC function does mot provide the models
fitted in each step, we have to do the search 'manually'
improvement <- TRUE

list0fModelComps <- list()

do the forward stepwise AIC search...
while (improvement & length(varsInPool)>0){

compute all other models
allOtherMods <- lapply(varsInPool, function(thisvar)
update (currentmod,
as.formula(pasteO(". ~ . + ",
thisvar))))

store all models that were examined in this step

list0fModels <- append(allOtherMods, list(currentmod))

save this list for later

list0fModelComps <- append(listOfModelComps, list(list0fModels))

check the AIC of all models

aics <- sapply(listOfModels, AIC)

what 7s the best model?

(wmaic <- which.min(aics))

is there any improvement?

if (wmaic == length(list0fModels)) improvement <- FALSE
redefine the current (best) model

currentmod <- listOfModels[[wmaic]]

and update the wvariables available

varsInPool <- varsInPool[-wmaic]

vartables left, which did not improve the model
varsInPool

the final model call

currentmod$call

get the test vector from the current model
vTs <- extract_testvec(limo = currentmod)

extract list of model components in each step when comparisons

are done based on the AIC

list0fComps <- lapply(listOfModelComps, function(lom)
extract_components(listOfModels = lom, response = cpus$perf, what = "aic"))

calculate the truncation limits for each of the comparisons in each iteration
list0fLimits <- lapply(listOfComps, function(lom)
calculate_limits(comps = lom, vTs = vTs))

now compute selective inference, which adjust for the forward stepwise AIC search
by supplying the lists of limits
calculate_selinf(limitObject = listOfLimits,

vy = cpus$perf,

sd = sigma(currentmod))

s
now do that with the function provided in the package
g e

currentmod <- 1lm(perf ~ 1, data = cpus)

res <- forwardAIC_adjustedInference(yname = "perf",
data = cpus,
mod = currentmod,

var = NULL)

res$inf

References
Riigamer, D., Greven, S. Selective inference after likelihood- or test-based model selection in linear models,
Statistics & Probability Letters 140, 7-12 (2018). https://doi.org/10.1016/j.spl.2018.04.010.

Riigamer, D., Greven, S. Inference for Ls-Boosting. Stat Comput 30, 279-289 (2020). https://doi.org/10.
1007 /s11222-019-09882-0.

Riigamer, D., Baumann, P., Greven, S. Selective inference for additive and linear mixed models, Computa-
tional Statistics & Data Analysis 167, 107350 (2022). https://doi.org/10.1016/j.csda.2021.107350.

https://doi.org/10.1016/j.spl.2018.04.010
https://doi.org/10.1007/s11222-019-09882-0
https://doi.org/10.1007/s11222-019-09882-0
https://doi.org/10.1016/j.csda.2021.107350

	Example: Combining AIC search and significance hunting
	Example: Combining models visited during stepwise AIC search
	References

